EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Modeling and Homogenization of Reaction Diffusion Systems Involving Biological Surfaces

Download or read book Multiscale Modeling and Homogenization of Reaction Diffusion Systems Involving Biological Surfaces written by Isabella Graf and published by Logos Verlag Berlin GmbH. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many complex chemical processes are responsible for the proper functioning of the human body. A prime example is the finely structured endoplasmic reticulum, which plays an important role in the metabolisms of human cells. To handle mathematical models that account for this fine structure, periodic homogenization methods are derived and applied. Previous results on homogenization of partial differential equations on finely structured manifolds are extended: Using the periodic unfolding method, diffusion terms on manifolds with different scalings with powers of the homogenization parameter, in particular in case of fast diffusion, are homogenized and are applied in three different biological systems: a linear model of carcinogenesis of cells, a nonlinear extension of the linear carcinogenesis model and a model considering T-cell signaling. Simulations and interpretations of the homogeneous T-cell signaling model give an insight into the related biological mechanisms.

Book Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A Posteriori Methods

Download or read book Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A Posteriori Methods written by Christian Nolde and published by Logos Verlag Berlin GmbH. This book was released on 2017 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of rigorous numerical methods to approach problems which can not be solved using standard methods (yet) has increased signifiantly in recent years. In this book, riogorous a-posteriori methods are used to study the time evolution of a surface growth model, given by a fourth order semi-linear parabolic partial differential equation, where standard methods fail to verify global uniqueness and smoothness of solutions. Based on an arbitrary numerical approximation, a-posteriori error-analysis is applied in order to prevent a blow up analytically. This is a method that in a similar way also applies to the three dimensional Navier-Stokes equations. The main idea consists of energy-estimates for the error between solution and approximation that yields a scalar differential equation controlling the norm of the error with coefficients depending solely on the numerical data. This allows the solution of the differential equation to be bounded using only numerical data. A key technical tool is a rigorous eigenvalue bound for the nonlinear operator linearized around the numerical approximation. The presented method succeeds to show global uniqueness for relatively large initial conditions, which is demonstrated in many numerical examples.

Book Commutability of Gamma limits in problems with multiple scales

Download or read book Commutability of Gamma limits in problems with multiple scales written by Martin Jesenko and published by Logos Verlag Berlin GmbH. This book was released on 2017 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the calculus of variations, the goal is to explore extrema of a given integral functional. From origins of the problem, it might be expected that the functional can be adequately simplified by neglecting some small quantities. A way to rigorously justify such an approximation is the Γ-convergence that ensures convergence of corresponding (global) extrema. The main motivation of this work is to investigate properties of doubly indexed integral functionals that Γ-converge for one index fixed. In other words, for two possible approximations we would like to determine whether we may perform them consecutively and if they commute. Our examples are taken from material science with homogenization being one of these two processes. In the first part we are considering a setting related to the elastic regime. However, our assumptions are fairly general and allow for applications in different areas. The second part is devoted to problems in the Hencky plasticity. They are considerably different due to special growth properties of the density.

Book Principles of Multiscale Modeling

Download or read book Principles of Multiscale Modeling written by Weinan E and published by Cambridge University Press. This book was released on 2011-07-07 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Book Modeling of Microscale Transport in Biological Processes

Download or read book Modeling of Microscale Transport in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2017-01-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Book Encyclopedia of Computational Mechanics

Download or read book Encyclopedia of Computational Mechanics written by Erwin Stein and published by . This book was released on 2004 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.

Book Uncertainty Quantification in Multiscale Materials Modeling

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Book The Mathematics and Mechanics of Biological Growth

Download or read book The Mathematics and Mechanics of Biological Growth written by Alain Goriely and published by Springer. This book was released on 2017-05-29 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.

Book An Introduction to Homogenization

Download or read book An Introduction to Homogenization written by Doïna Cioranescu and published by Oxford University Press on Demand. This book was released on 1999 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are widely used in industry: well-known examples of this are the superconducting multi-filamentary composites which are used in the composition of optical fibres. Such materials are complicated to model, as different points in the material will have different properties. The mathematical theory of homogenization is designed to deal with this problem, and hence is used to model the behaviour of these important materials. This book provides a self-contained and authoritative introduction to the subject for graduates and researchers in the field.

Book Continuum Micromechanics

Download or read book Continuum Micromechanics written by P. Suquet and published by Springer. This book was released on 2014-05-04 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent progress of fundamental nature made in the new developed field of micromechanics: transformation field analysis, variational bounds for nonlinear composites, higher-order gradients in micromechanical damage models, dynamics of composites, pattern based variational bounds.

Book Multiscale Modeling in Biomechanics and Mechanobiology

Download or read book Multiscale Modeling in Biomechanics and Mechanobiology written by Suvranu De and published by Springer. This book was released on 2014-10-10 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

Book Handbook of Porous Media

Download or read book Handbook of Porous Media written by Kambiz Vafai and published by CRC Press. This book was released on 2015-06-23 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i

Book Biofilms in Wastewater Treatment

Download or read book Biofilms in Wastewater Treatment written by Stefan Wuertz and published by IWA Publishing. This book was released on 2003-04-30 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)

Book Multiscale Methods

    Book Details:
  • Author : Jacob Fish
  • Publisher : Oxford University Press
  • Release : 2010
  • ISBN : 0199233853
  • Pages : 631 pages

Download or read book Multiscale Methods written by Jacob Fish and published by Oxford University Press. This book was released on 2010 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Book Flowing Matter

    Book Details:
  • Author : Federico Toschi
  • Publisher : Springer Nature
  • Release : 2019-09-25
  • ISBN : 3030233707
  • Pages : 313 pages

Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Book Multiscale Problems  Theory  Numerical Approximation And Applications

Download or read book Multiscale Problems Theory Numerical Approximation And Applications written by Alain Damlamian and published by World Scientific. This book was released on 2011-10-13 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier-Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.

Book Reaction diffusion Waves

Download or read book Reaction diffusion Waves written by Arnaud Ducrot and published by Editions Publibook. This book was released on 2009 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: