EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Modeling and Experiments on Microstructural Evolution in Nuclear Materials

Download or read book Multiscale Modeling and Experiments on Microstructural Evolution in Nuclear Materials written by Yongfeng Zhang and published by . This book was released on 2015 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Comprehensive Nuclear Materials

Download or read book Comprehensive Nuclear Materials written by and published by Elsevier. This book was released on 2020-07-22 with total page 4871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Book Practical Aspects of Computational Chemistry

Download or read book Practical Aspects of Computational Chemistry written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Practical Aspects of Computational Chemistry" presents contributions on a range of aspects of Computational Chemistry applied to a variety of research fields. The chapters focus on recent theoretical developments which have been used to investigate structures and properties of large systems with minimal computational resources. Studies include those in the gas phase, various solvents, various aspects of computational multiscale modeling, Monte Carlo simulations, chirality, the multiple minima problem for protein folding, the nature of binding in different species and dihydrogen bonds, carbon nanotubes and hydrogen storage, adsorption and decomposition of organophosphorus compounds, X-ray crystallography, proton transfer, structure-activity relationships, a description of the REACH programs of the European Union for chemical regulatory purposes, reactions of nucleic acid bases with endogenous and exogenous reactive oxygen species and different aspects of nucleic acid bases, base pairs and base tetrads.

Book Multiscale Materials Modeling

    Book Details:
  • Author : Siegfried Schmauder
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2016-08-22
  • ISBN : 3110412454
  • Pages : 346 pages

Download or read book Multiscale Materials Modeling written by Siegfried Schmauder and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction

Book Uncertainty Quantification in Multiscale Materials Modeling

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Book Multi Physics and Multi Scale Modeling and Simulation Methods for Nuclear Reactor Application

Download or read book Multi Physics and Multi Scale Modeling and Simulation Methods for Nuclear Reactor Application written by Xingjie Peng and published by Frontiers Media SA. This book was released on 2024-02-28 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation, and proper considerations for coupling among different physics and required to provide powerful numerical simulation tools. In the past simplistic models for some of the physics phenomena are used, with the recent development of advanced numerical methods, software design, and high-performance computing power, the appeal of multi-physics and multi-scale modeling and simulation has been broadened.

Book Structural Materials for Generation IV Nuclear Reactors

Download or read book Structural Materials for Generation IV Nuclear Reactors written by Pascal Yvon and published by Woodhead Publishing. This book was released on 2016-08-27 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area

Book Programming Phase Field Modeling

Download or read book Programming Phase Field Modeling written by S. Bulent Biner and published by Springer. This book was released on 2017-01-25 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a fast-track pathway to numerical implementation of phase-field modeling—a relatively new paradigm that has become the method of choice for modeling and simulation of microstructure evolution in materials. It serves as a cookbook for the phase-field method by presenting a collection of codes that act as foundations and templates for developing other models with more complexity. Programming Phase-Field Modeling uses the Matlab/Octave programming package, simpler and more compact than other high-level programming languages, providing ease of use to the widest audience. Particular attention is devoted to the computational efficiency and clarity during development of the codes, which allows the reader to easily make the connection between the mathematical formulism and the numerical implementation of phase-field models. The background materials provided in each case study also provide a forum for undergraduate level modeling-simulations courses as part of their curriculum.

Book Light Water Reactor Materials

Download or read book Light Water Reactor Materials written by Arthur T. Motta and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase Field Methods in Materials Science and Engineering

Download or read book Phase Field Methods in Materials Science and Engineering written by Nikolas Provatas and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Book Model Validation and Uncertainty Quantification  Volume 3

Download or read book Model Validation and Uncertainty Quantification Volume 3 written by H. Sezer Atamturktur and published by Springer Science & Business Media. This book was released on 2014-04-11 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data

Book Nuclear Reactors

Download or read book Nuclear Reactors written by Amir Mesquita and published by BoD – Books on Demand. This book was released on 2012-02-10 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of studies in nuclear reactors technology from authors across the globe. Topics discussed in this compilation include: thermal hydraulic investigation of TRIGA type research reactor, materials testing reactor and high temperature gas-cooled reactor; the use of radiogenic lead recovered from ores as a coolant for fast reactors; decay heat in reactors and spent-fuel pools; present status of two-phase flow studies in reactor components; thermal aspects of conventional and alternative fuels in supercritical water?cooled reactor; two-phase flow coolant behavior in boiling water reactors under earthquake condition; simulation of nuclear reactors core; fuel life control in light-water reactors; methods for monitoring and controlling power in nuclear reactors; structural materials modeling for the next generation of nuclear reactors; application of the results of finite group theory in reactor physics; and the usability of vermiculite as a shield for nuclear reactor.

Book Nuclear Fusion Programme  Annual Report of the Association Karlsruhe Institute of Technology EURATOM   January 2013   December 2013

Download or read book Nuclear Fusion Programme Annual Report of the Association Karlsruhe Institute of Technology EURATOM January 2013 December 2013 written by Pleli, Ingrid and published by KIT Scientific Publishing. This book was released on 2015-03-18 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Welding Mechanics

Download or read book Computational Welding Mechanics written by John A. Goldak and published by Springer Science & Business Media. This book was released on 2006-07-04 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Welding Mechanics (CWM) provides readers with a complete introduction to the principles and applications of computational welding including coverage of the methods engineers and designers are using in computational welding mechanics to predict distortion and residual stress in welded structures, thereby creating safer, more reliable and lower cost structures. Drawing upon years of practical experience and the study of computational welding mechanics the authors instruct the reader how to: - understand and interpret computer simulation and virtual welding techniques including an in depth analysis of heat flow during welding, microstructure evolution and distortion analysis and fracture of welded structures, - relate CWM to the processes of design, build, inspect, regulate, operate and maintain welded structures, - apply computational welding mechanics to industries such as ship building, natural gas and automobile manufacturing. Ideally suited for practicing engineers and engineering students, Computational Welding Mechanics is a must-have book for understanding welded structures and recent technological advances in welding, and it provides a unified summary of recent research results contributed by other researchers.

Book Fundamentals of Materials Science

Download or read book Fundamentals of Materials Science written by Eric J. Mittemeijer and published by Springer Nature. This book was released on 2022-01-01 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.

Book Opportunities in Protection Materials Science and Technology for Future Army Applications

Download or read book Opportunities in Protection Materials Science and Technology for Future Army Applications written by National Research Council and published by National Academies Press. This book was released on 2011-08-27 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor. Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.