EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling and Simulation Problems on Tumor immune System Dynamics

Download or read book Modelling and Simulation Problems on Tumor immune System Dynamics written by and published by . This book was released on 1996 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Survey of Models for Tumor Immune System Dynamics

Download or read book A Survey of Models for Tumor Immune System Dynamics written by John A. Adam and published by Springer Science & Business Media. This book was released on 2012-10-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

Book A Survey of Models for Tumor Immune System Dynamics

Download or read book A Survey of Models for Tumor Immune System Dynamics written by John Adam and published by Birkhäuser. This book was released on 2012-09-27 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

Book Mathematical Models of Tumor Immune System Dynamics

Download or read book Mathematical Models of Tumor Immune System Dynamics written by Amina Eladdadi and published by Springer. This book was released on 2014-11-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.

Book Cancer Modelling and Simulation

Download or read book Cancer Modelling and Simulation written by Luigi Preziosi and published by CRC Press. This book was released on 2003-06-18 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding how cancer tumours develop and spread is vital for finding treatments and cures. Cancer Modelling and Simulation demonstrates how mathematical modelling and computer simulation techniques are used to discover and gain insight into the dynamics of tumour development and growth. It highlights the benefits of tumour modelling, such as discovering optimal tumour therapy schedules, identifying the most promising candidates for further clinical investigation, and reducing the number of animal experiments. By examining the analytical, mathematical, and biological aspects of tumour growth and modelling, the book provides a common language and knowledge for professionals in several disciplines.

Book Mathematical Modeling and Computational Predictions in Oncoimmunology

Download or read book Mathematical Modeling and Computational Predictions in Oncoimmunology written by Vladimir A. Kuznetsov and published by Frontiers Media SA. This book was released on 2024-06-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.

Book Disease Dynamics

    Book Details:
  • Author : Alexander Asachenkov
  • Publisher : Springer Science & Business Media
  • Release : 1993-12-23
  • ISBN : 9780817636920
  • Pages : 344 pages

Download or read book Disease Dynamics written by Alexander Asachenkov and published by Springer Science & Business Media. This book was released on 1993-12-23 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses mathematical modelling, analysis and control of the immune system and disease dynamics. The purpose of the book is the practical application of mathematics to immunology and medicine in order to establish a basis for more effective treatment, to provide a tutorial systematic description of how the immune system controls diseases and to present several significant examples such as malignant tumour dynamics and control, and viral hepatitis.

Book Mathematical Modeling and the Control of Immune Processes with Application to Cancer

Download or read book Mathematical Modeling and the Control of Immune Processes with Application to Cancer written by Kwon Soon Lee and published by . This book was released on 1990 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A foundation for the control of tumors is presented, based upon the formulation of a realistic, knowledge-based mathematical model of the interaction between tumor cells and the immune system. The parametric control variables relevant to the latest experimental data, e.g., the sigmoidal dose-response relationship and Michaelis-Menten dynamics, are also considered. The model consists of 12 states, each composed of first-order, nonlinear differential equations based on cellular kinetics and each of which can be modeled bilinearly. In recent years a great deal of clinical progress has been achieved in the use of optimal controls to improve cancer therapy patient care. For this study, a cancer immunotherapy problem is investigated in which the aim is to minimize the tumor burden at the end of the treatment period, while penalizing excessive administration of interleukin-2 as a limit of toxicity. The optimal solution developed for this investigation is a mixture of an initially large dose of interleukin-2, followed by a gradually decreased dosage and a continuing infusion to maintain the tumor cell population at its allowable limit. Sensitivity analysis is applied to an investigation of the influences of system parameters. It has been found that the immune system is influenced greatly by several parameters such as macrophage level, tumor killing rate, tumor growth rate, and IL-2 level. The simulation results suggest that parametric control variables are important in the destruction of tumors and that the application of exacerbation theory is a good method of tumor control.

Book Mathematical Modeling of Complex Biological Systems

Download or read book Mathematical Modeling of Complex Biological Systems written by Abdelghani Bellouquid and published by Springer Science & Business Media. This book was released on 2007-10-10 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Proposed models are related to the generalized Boltzmann equation. The book may be used for advanced graduate courses and seminars in biological systems modeling.

Book Mathematical Methods and Models in Biomedicine

Download or read book Mathematical Methods and Models in Biomedicine written by Urszula Ledzewicz and published by Springer Science & Business Media. This book was released on 2012-10-21 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Book Multiscale Cancer Modeling

Download or read book Multiscale Cancer Modeling written by Thomas S. Deisboeck and published by CRC Press. This book was released on 2010-12-08 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Book Understanding Complex Biological Systems with Mathematics

Download or read book Understanding Complex Biological Systems with Mathematics written by Ami Radunskaya and published by Springer. This book was released on 2018-10-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume examines a variety of biological and medical problems using mathematical models to understand complex system dynamics. Featured topics include autism spectrum disorder, ectoparasites and allogrooming, argasid ticks dynamics, super-fast nematocyst firing, cancer-immune population dynamics, and the spread of disease through populations. Applications are investigated with mathematical models using a variety of techniques in ordinary and partial differential equations, difference equations, Markov-chain models, Monte-Carlo simulations, network theory, image analysis, and immersed boundary method. Each article offers a thorough explanation of the methodologies used and numerous tables and color illustrations to explain key results. This volume is suitable for graduate students and researchers interested in current applications of mathematical models in the biosciences. The research featured in this volume began among newly-formed collaborative groups at the 2017 Women Advancing Mathematical Biology Workshop that took place at the Mathematical Biosciences Institute in Columbus, Ohio. The groups spent one intensive week working at MBI and continued their collaborations after the workshop, resulting in the work presented in this volume.

Book Selected Topics in Cancer Modeling

Download or read book Selected Topics in Cancer Modeling written by Nicola Bellomo and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.

Book Mathematical Oncology 2013

Download or read book Mathematical Oncology 2013 written by Alberto d'Onofrio and published by Springer. This book was released on 2014-10-16 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.

Book Mathematical and Computational Models of Cancer and the Immune System

Download or read book Mathematical and Computational Models of Cancer and the Immune System written by Diego Chowell-Puente and published by . This book was released on 2016 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of small subclones at the time of diagnosis. Because some of these rare subclones harbor pre-existing treatment-resistant mutations, they present a major challenge to precision medicine. Second, I study the question of self and non-self discrimination by the immune system, which is fundamental in the field in cancer immunology. By performing a quantitative analysis of the biochemical properties of thousands of MHC class I peptides, I find that hydrophobicity of T cell receptors contact residues is a hallmark of immunogenic epitopes. Based on these findings, I further develop a computational model to predict immunogenic epitopes which facilitate the development of T cell vaccines against pathogen and tumor antigens. Lastly, I study the effect of early detection in the context of Ebola. I develope a simple mathematical model calibrated to the transmission dynamics of Ebola virus in West Africa. My findings suggest that a strategy that focuses on early diagnosis of high-risk individuals, caregivers, and health-care workers at the pre-symptomatic stage, when combined with public health measures to improve the speed and efficacy of isolation of infectious individuals, can lead to rapid reductions in Ebola transmission.

Book Mathematical Models of Cancer and Different Therapies

Download or read book Mathematical Models of Cancer and Different Therapies written by Regina Padmanabhan and published by Springer Nature. This book was released on 2020-10-31 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.

Book Systems Biology of Tumor Microenvironment

Download or read book Systems Biology of Tumor Microenvironment written by Katarzyna A. Rejniak and published by Springer. This book was released on 2016-10-13 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume discusses the complexity of tumor microenvironments during cancer development, progression and treatment. Each chapter presents a different mathematical model designed to investigate the interactions between tumor cells and the surrounding stroma and stromal cells. The topics covered in this book include the quantitative image analysis of a tumor microenvironment, the microenvironmental barriers in oxygen and drug delivery to tumors, the development of tumor microenvironmental niches and sanctuaries, intravenous transport of the circulating tumor cells, the role of the tumor microenvironment in chemotherapeutic interventions, the interactions between tumor cells, the extracellular matrix, the interstitial fluid, and the immune and stromal cells. Mathematical models discussed here embrace both continuous and agent-based approaches, as well as mathematical frameworks of solid mechanics, fluid dynamics and optimal control theory. The topics in each chapter will be of interest to a biological community wishing to apply the mathematical methods to interpret their experimental data, and to a biomathematical audience interested in exploring how mathematical models can be used to address complex questions in cancer biology.