Download or read book Advanced Control of Doubly Fed Induction Generator for Wind Power Systems written by Dehong Xu and published by John Wiley & Sons. This book was released on 2018-08-14 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.
Download or read book Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems written by Lingling Fan and published by Academic Press. This book was released on 2015-04-16 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. - Focuses on real and reactive power control - Supported by PSCAD and Matlab/Simulink examples - Considers the difference in control objectives between ac drive systems and grid integration systems
Download or read book Modeling and Modern Control of Wind Power written by Qiuwei Wu and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.
Download or read book Induction Generators for Wind Power written by Vladislav Akhmatov and published by Multi-Science Publishing Company. This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: At a time of great concern about energy efficiency and the future of energy supply comes an in-depth look at the technical aspects of producing wind power. The complexities of converting wind power into electricity that can be readily distributed through national power lines are discussed. This book analyzes a full range of simulated induction generators and grid conditions, and electrical engineering theory is also presented.
Download or read book Doubly Fed Induction Machine written by Gonzalo Abad and published by Wiley-IEEE Press. This book was released on 2011-11-01 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.
Download or read book Modeling of Wind Turbines with Doubly Fed Generator System written by Jens Fortmann and published by Springer. This book was released on 2014-08-22 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requirements during faults found in almost all modern grid codes. Based on this analysis, the design of a reactive power control system for wind turbines and wind plants is deduced that can provide static and dynamic capabilities to ensure a stable voltage and reactive power control for future grids without remaining synchronous generation.
Download or read book Wind Driven Doubly Fed Induction Generator written by Adel Abdelbaset and published by Springer. This book was released on 2017-10-30 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a modified model reference adaptive system (MRAS) observer for sensorless vector control of a wind driven doubly fed induction generator (DFIG). A mathematical model of the DFIG as influenced by core loss and main flux saturation is developed. The authors describe and evaluate grid synchronization enhancement of a wind driven DFIG using adaptive sliding mode control (SMC). Besides, grid synchronization of a wind driven DFIG under unbalanced grid voltage is also fully covered in this book.
Download or read book Modeling of Turbomachines for Control and Diagnostic Applications written by Igor Loboda and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Power Conversion and Control of Wind Energy Systems written by Bin Wu and published by John Wiley & Sons. This book was released on 2011-08-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
Download or read book Modeling of Wind Turbines with Doubly Fed Generator System written by Jens Fortmann and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requirements during faults found in almost all modern grid codes. Based on this analysis, the design of a reactive power control system for wind turbines and wind plants is deduced that can provide static and dynamic capabilities to ensure a stable voltage and reactive power control for future grids without remaining synchronous generation. Contents Generic models for Turbine Aerodynamics, the Turbine Structural Dynamics and the Turbine Control Generic models of Generator and Converter for Doubly Fed Generator System and Full Converter Reactive Power Control of Wind Plants Target Groups Teachers, students and researchers dealing with the grid connection of wind turbines Engineers at grid operators, certification bodies and wind plant operators About the Author Jens Fortmann is working as Leading Expert at a major manufacturer of wind turbines. He received his PhD at the Department for Electrical Power Systems, University of Duisburg-Essen.
Download or read book Dynamics and Control of Electric Transmission and Microgrids written by K. R. Padiyar and published by John Wiley & Sons. This book was released on 2019-02-04 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the latest developments in grid dynamics and control and highlights the role of transmission and distribution grids Dynamics and Control of Electric Transmission and Microgrids offers a concise and comprehensive review of the most recent developments and research in grid dynamics and control. In addition, the authors present a new style of presentation that highlights the role of transmission and distribution grids that ensure the reliability and quality of electric power supply. The authors — noted experts in the field — offer an introduction to the topic and explore the basic characteristics and operations of the grid. The text also reviews a wealth of vital topics such as FACTS and HVDC Converter controllers, the stability and security issues of the bulk power system, loads which can be viewed as negative generation, the power limits and energy availability when distributed storage is used and much more. This important resource: Puts the focus on the role of transmission and distribution grids that ensure the reliability and quality of electric power supply Includes modeling and control of wind and solar energy generation for secure energy transfer Presents timely coverage of on-line detection of loss of synchronism, wide area measurements and applications, wide-area feedback control systems for power swing damping and microgrids-operation and control Written for students of power system dynamics and control/electrical power industry professionals, Dynamics and Control of Electric Transmission and Microgrids is a comprehensive guide to the recent developments in grid dynamics and control and highlights the role of transmission and distribution grids that ensure the reliability and quality of electric power supply.
Download or read book Wind Energy Generation Modelling and Control written by Olimpo Anaya-Lara and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: WIND ENERGY GENERATION WIND ENERGY GENERATION MODELLING AND CONTROL With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.
Download or read book Wind Power Integration written by Brendan Fox and published by IET. This book was released on 2007-06-20 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This essential book examines the main problems of wind power integration and guides the reader through a number of the most recent solutions based on current research and operational experience of wind power integration.
Download or read book Model Predictive Control of Wind Energy Conversion Systems written by Venkata Yaramasu and published by John Wiley & Sons. This book was released on 2016-12-19 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.
Download or read book Wind Power in Power Systems written by Thomas Ackermann and published by John Wiley & Sons. This book was released on 2012-04-23 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.
Download or read book Analysis of Electric Machinery and Drive Systems written by Paul C. Krause and published by John Wiley & Sons. This book was released on 2013-06-17 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.
Download or read book Flexible AC Transmission Systems Modelling and Control written by Xiao-Ping Zhang and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and Power Electronic Control for Wind Generation.