EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON

Download or read book METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-31 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this meteorological data analysis and prediction project using machine learning with Python, we begin by conducting data exploration to understand the dataset's structure and contents. We load the dataset and check for any missing values or anomalies that may require preprocessing. To gain insights into the data, we visualize the distribution of each feature, examining histograms, box plots, and scatter plots. This helps us identify potential outliers and understand the relationships between different variables. After data exploration, we preprocess the dataset, handling missing values through imputation techniques or removing rows with missing data, ensuring the data is ready for machine learning algorithms. Next, we define the problem we want to solve, which is predicting the weather summary based on various meteorological parameters. The weather summary serves as our target variable, while the other features act as input variables. We split the data into training and testing sets to train the machine learning models on one subset and evaluate their performance on unseen data. For the prediction task, we start with simple machine learning models like Logistic Regression or Decision Trees. We fit these models to the training data and assess their accuracy on the test set. To improve model performance, we explore more complex algorithms, such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP). We use grid search to tune the hyperparameters of these models and find the best combination that optimizes their performance. During model evaluation, we use metrics such as accuracy, precision, recall, and F1-score to measure how well the models predict the weather summary. To ensure robustness and reliability of the results, we apply k-fold cross-validation, where the dataset is divided into k subsets, and each model is trained and evaluated k times. Throughout the project, we pay attention to potential issues like overfitting or underfitting, striving to strike a balance between model complexity and generalization. Visualizations play a crucial role in understanding the model's behavior and identifying areas for improvement. We create various plots, including learning curves and confusion matrices, to interpret the model's performance. In the prediction phase, we apply the trained models to the test dataset to predict the weather summary for each sample. We compare the predicted values with the actual values to assess the model's performance on unseen data. The entire project is well-documented, ensuring transparency and reproducibility. We record the methodologies, findings, and results to facilitate future reference or sharing with stakeholders. We analyze the predictive capabilities of the models and summarize their strengths and limitations. We discuss potential areas of improvement and future directions to enhance the model's accuracy and robustness. The main objective of this project is to accurately predict weather summaries based on meteorological data, while also gaining valuable insights into the underlying patterns and trends in the data. By leveraging machine learning algorithms, preprocessing techniques, hyperparameter tuning, and thorough evaluation, we aim to build reliable models that can assist in weather forecasting and analysis.

Book Machine Learning for Time Series Forecasting with Python

Download or read book Machine Learning for Time Series Forecasting with Python written by Francesca Lazzeri and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.

Book ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

Download or read book ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-17 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book TIME SERIES WEATHER  FORECASTING AND PREDICTION WITH PYTHON

Download or read book TIME SERIES WEATHER FORECASTING AND PREDICTION WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-12 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, we embarked on a journey of exploring time-series weather data and performing forecasting and prediction using Python. The objective was to gain insights into the dataset, visualize feature distributions, analyze year-wise and month-wise patterns, apply ARIMA regression to forecast temperature, and utilize machine learning models to predict weather conditions. Let's delve into each step of the process. To begin, we started by exploring the dataset, which contained historical weather data. We examined the structure and content of the dataset to understand its variables, such as temperature, humidity, wind speed, and weather conditions. Understanding the dataset is crucial for effective analysis and modeling. Next, we visualized the distributions of different features. By creating histograms, box plots, and density plots, we gained insights into the range, central tendency, and variability of the variables. These visualizations allowed us to identify any outliers, skewed distributions, or patterns within the data. Moving on, we explored the dataset's temporal aspects by analyzing year-wise and month-wise distributions. This involved aggregating the data based on years and months and visualizing the trends over time. By examining these patterns, we could observe any long-term or seasonal variations in the weather variables. After gaining a comprehensive understanding of the dataset, we proceeded to apply ARIMA regression for temperature forecasting. ARIMA (Autoregressive Integrated Moving Average) is a powerful technique for time-series analysis. By fitting an ARIMA model to the temperature data, we were able to make predictions and assess the model's accuracy in capturing the underlying patterns. In addition to temperature forecasting, we aimed to predict weather conditions using machine learning models. We employed various classification algorithms such as Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Adaboost, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGBM), and Multi-Layer Perceptron (MLP). These models were trained on the historical weather data, with weather conditions as the target variable. To evaluate the performance of the machine learning models, we utilized several metrics: accuracy, precision, recall, and F1 score. Accuracy measures the overall correctness of the predictions, while precision quantifies the proportion of true positive predictions out of all positive predictions. Recall, also known as sensitivity, measures the ability to identify true positives, and F1 score combines precision and recall into a single metric. Throughout the process, we emphasized the importance of data preprocessing, including handling missing values, scaling features, and splitting the dataset into training and testing sets. Preprocessing ensures the data is in a suitable format for analysis and modeling, and it helps prevent biases or inconsistencies in the results. By following this step-by-step approach, we were able to gain insights into the dataset, visualize feature distributions, analyze temporal patterns, forecast temperature using ARIMA regression, and predict weather conditions using machine learning models. The evaluation metrics provided a comprehensive assessment of the models' performance in capturing the weather conditions accurately. In conclusion, this project demonstrated the power of Python in time-series weather forecasting and prediction. Through data exploration, visualization, regression analysis, and machine learning modeling, we obtained valuable insights and accurate predictions regarding temperature and weather conditions. This knowledge can be applied in various domains such as agriculture, transportation, and urban planning, enabling better decision-making based on weather forecasts.

Book Time Series Forecasting using Deep Learning

Download or read book Time Series Forecasting using Deep Learning written by Ivan Gridin and published by BPB Publications. This book was released on 2021-10-15 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the infinite possibilities offered by Artificial Intelligence and Neural Networks KEY FEATURES ● Covers numerous concepts, techniques, best practices and troubleshooting tips by community experts. ● Includes practical demonstration of robust deep learning prediction models with exciting use-cases. ● Covers the use of the most powerful research toolkit such as Python, PyTorch, and Neural Network Intelligence. DESCRIPTION This book is amid at teaching the readers how to apply the deep learning techniques to the time series forecasting challenges and how to build prediction models using PyTorch. The readers will learn the fundamentals of PyTorch in the early stages of the book. Next, the time series forecasting is covered in greater depth after the programme has been developed. You will try to use machine learning to identify the patterns that can help us forecast the future results. It covers methodologies such as Recurrent Neural Network, Encoder-decoder model, and Temporal Convolutional Network, all of which are state-of-the-art neural network architectures. Furthermore, for good measure, we have also introduced the neural architecture search, which automates searching for an ideal neural network design for a certain task. Finally by the end of the book, readers would be able to solve complex real-world prediction issues by applying the models and strategies learnt throughout the course of the book. This book also offers another great way of mastering deep learning and its various techniques. WHAT YOU WILL LEARN ● Work with the Encoder-Decoder concept and Temporal Convolutional Network mechanics. ● Learn the basics of neural architecture search with Neural Network Intelligence. ● Combine standard statistical analysis methods with deep learning approaches. ● Automate the search for optimal predictive architecture. ● Design your custom neural network architecture for specific tasks. ● Apply predictive models to real-world problems of forecasting stock quotes, weather, and natural processes. WHO THIS BOOK IS FOR This book is written for engineers, data scientists, and stock traders who want to build time series forecasting programs using deep learning. Possessing some familiarity of Python is sufficient, while a basic understanding of machine learning is desirable but not needed. TABLE OF CONTENTS 1. Time Series Problems and Challenges 2. Deep Learning with PyTorch 3. Time Series as Deep Learning Problem 4. Recurrent Neural Networks 5. Advanced Forecasting Models 6. PyTorch Model Tuning with Neural Network Intelligence 7. Applying Deep Learning to Real-world Forecasting Problems 8. PyTorch Forecasting Package 9. What is Next?

Book Clouds and Climate

    Book Details:
  • Author : A. Pier Siebesma
  • Publisher : Cambridge University Press
  • Release : 2020-08-20
  • ISBN : 1107061075
  • Pages : 421 pages

Download or read book Clouds and Climate written by A. Pier Siebesma and published by Cambridge University Press. This book was released on 2020-08-20 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive overview of research on clouds and their role in our present and future climate, for advanced students and researchers.

Book Patterns Identification and Data Mining in Weather and Climate

Download or read book Patterns Identification and Data Mining in Weather and Climate written by Abdelwaheb Hannachi and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes. The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last 15 years. - Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A. Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area. - Maarten Ambaum, Department of Meteorology, University of Reading, U.K. This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field. - Frank Kwasniok, College of Engineering, University of Exeter, U.K.

Book Modern Time Series Forecasting with Python

Download or read book Modern Time Series Forecasting with Python written by Manu Joseph and published by Packt Publishing Ltd. This book was released on 2022-11-24 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts Key Features Explore industry-tested machine learning techniques used to forecast millions of time series Get started with the revolutionary paradigm of global forecasting models Get to grips with new concepts by applying them to real-world datasets of energy forecasting Book DescriptionWe live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.What you will learn Find out how to manipulate and visualize time series data like a pro Set strong baselines with popular models such as ARIMA Discover how time series forecasting can be cast as regression Engineer features for machine learning models for forecasting Explore the exciting world of ensembling and stacking models Get to grips with the global forecasting paradigm Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer Explore multi-step forecasting and cross-validation strategies Who this book is for The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.

Book Time Series Forecasting in Python

Download or read book Time Series Forecasting in Python written by Marco Peixeiro and published by Simon and Schuster. This book was released on 2022-10-04 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. Time Series Forecasting in Python teaches you to apply time series forecasting and get immediate, meaningful predictions. You'll learn both traditional statistical and new deep learning models for time series forecasting, all fully illustrated with Python source code. Test your skills with hands-on projects for forecasting air travel, volume of drug prescriptions, and the earnings of Johnson & Johnson. By the time you're done, you'll be ready to build accurate and insightful forecasting models with tools from the Python ecosystem. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Book MACHINE LEARNING   COMPUTING APPLICATIONS CASE STUDIES BOOK

Download or read book MACHINE LEARNING COMPUTING APPLICATIONS CASE STUDIES BOOK written by Dr. K. Vijayalakshmi and published by Archers & Elevators Publishing House. This book was released on with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning for Time Series with Python

Download or read book Machine Learning for Time Series with Python written by Ben Auffarth and published by Packt Publishing Ltd. This book was released on 2021-10-29 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods including the latest online and deep learning algorithmsLearn to increase the accuracy of your predictions by matching the right model with the right problemMaster time series via real-world case studies on operations management, digital marketing, finance, and healthcareBook Description The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You'll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series. What you will learnUnderstand the main classes of time series and learn how to detect outliers and patternsChoose the right method to solve time-series problemsCharacterize seasonal and correlation patterns through autocorrelation and statistical techniquesGet to grips with time-series data visualizationUnderstand classical time-series models like ARMA and ARIMAImplement deep learning models, like Gaussian processes, transformers, and state-of-the-art machine learning modelsBecome familiar with many libraries like Prophet, XGboost, and TensorFlowWho this book is for This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.

Book Machine Learning for Sustainable Development

Download or read book Machine Learning for Sustainable Development written by Kamal Kant Hiran and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-07-19 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.

Book Ultimate Enterprise Data Analysis and Forecasting using Python

Download or read book Ultimate Enterprise Data Analysis and Forecasting using Python written by Shanthababu Pandian and published by Orange Education Pvt Ltd. This book was released on 2023-12-28 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Approaches to Time Series Analysis and Forecasting using Python for Informed Decision-Making KEY FEATURES ● Comprehensive Resource for Python-Based Time Series Analysis and Forecasting. ● Delve into real-world applications with industry-specific case studies. ● Extract valuable insights by solving time series challenges across various sectors. ● Understand the significance of Azure Time Series Insights and AWS Forecast components. ● Practical insights into leveraging cloud platforms for efficient time series forecasting. DESCRIPTION Embark on a transformative journey through the intricacies of time series analysis and forecasting with this comprehensive handbook. Beginning with the essential packages for data science and machine learning projects you will delve into Python's prowess for efficient time series data analysis, exploring the core components and real-world applications across various industries through compelling use-case studies. From understanding classical models like AR, MA, ARMA, and ARIMA to exploring advanced techniques such as exponential smoothing and ETS methods, this guide ensures a deep understanding of the subject. It will help you navigate the complexities of vector autoregression (VAR, VMA, VARMA) and elevate your skills with a deep dive into deep learning techniques for time series analysis. By the end of this book, you will be able to harness the capabilities of Azure Time Series Insights and explore the cutting-edge AWS Forecast components, unlocking the cloud's power for advanced and scalable time series forecasting. WHAT WILL YOU LEARN ● Explore Time Series Data Analysis and Forecasting, covering components and significance. ● Gain a practical understanding through hands-on examples and real-world case studies. ● Master Time Series Models (AR, MA, ARMA, ARIMA, VAR, VMA, VARMA) with executable samples. ● Delve into Deep Learning for Time Series Analysis, demystified with classical examples. ● Actively engage with Azure Time Series Insights and AWS Forecast components for a contemporary perspective. WHO IS THIS BOOK FOR? This book caters to beginners, intermediates, and practitioners in data-related fields such as Data Analysts, Data Scientists, and Machine Learning Engineers, as well as those venturing into Time Series Analysis and Forecasting. It assumes readers have a foundational understanding of programming languages (C, C++, Python), data structures, statistics, and visualization concepts. With a focus on specific projects, it also functions as a quick reference for advanced users. TABLE OF CONTENTS 1. Introduction to Python and its key packages for DS and ML Projects 2. Python for Time Series Data Analysis 3. Time Series Analysis and its Components 4. Time Series Analysis and Forecasting Opportunities in Various Industries 5. Exploring various aspects of Time Series Analysis and Forecasting 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA 7. Understanding Exponential Smoothing and ETS Methods in TSA 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA) 9. Deep Learning for Time Series Analysis and Forecasting 10. Azure Time Series Insights 11. AWSForecast Index

Book Machine Learning and Data Mining Approaches to Climate Science

Download or read book Machine Learning and Data Mining Approaches to Climate Science written by Valliappa Lakshmanan and published by Springer. This book was released on 2015-06-30 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014.

Book Applied Time Series Analysis and Forecasting with Python

Download or read book Applied Time Series Analysis and Forecasting with Python written by Changquan Huang and published by Springer Nature. This book was released on 2022-10-19 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time series forecasting. Providing an organic combination of the principles of time series analysis and Python programming, it enables the reader to study methods and techniques and practice writing and running Python code at the same time. Its data-driven approach to analyzing and modeling time series data helps new learners to visualize and interpret both the raw data and its computed results. Primarily intended for students of statistics, economics and data science with an undergraduate knowledge of probability and statistics, the book will equally appeal to industry professionals in the fields of artificial intelligence and data science, and anyone interested in using Python to solve time series problems.

Book International Conference on Innovative Computing and Communications

Download or read book International Conference on Innovative Computing and Communications written by Deepak Gupta and published by Springer Nature. This book was released on 2022-09-22 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes high-quality research papers presented at the Fifth International Conference on Innovative Computing and Communication (ICICC 2022), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on February 19–20, 2022. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.

Book Introduction to Time Series Forecasting With Python

Download or read book Introduction to Time Series Forecasting With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-02-16 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.