Download or read book Medical Applications of Intelligent Data Analysis written by Rafael Magdalena Benedito and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the potential of utilizing medical data through the implementation of developed models in practical applications"--
Download or read book Intelligent Data Analysis for Biomedical Applications written by D. Jude Hemanth and published by Academic Press. This book was released on 2019-03-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems
Download or read book Intelligent Data Analysis in Medicine and Pharmacology written by Nada Lavrač and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent data analysis, data mining and knowledge discovery in databases have recently gained the attention of a large number of researchers and practitioners. This is witnessed by the rapidly increasing number of submissions and participants at related conferences and workshops, by the emergence of new journals in this area (e.g., Data Mining and Knowledge Discovery, Intelligent Data Analysis, etc.), and by the increasing number of new applications in this field. In our view, the awareness of these challenging research fields and emerging technologies has been much larger in industry than in medicine and pharmacology. The main purpose of this book is to present the various techniques and methods that are available for intelligent data analysis in medicine and pharmacology, and to present case studies of their application. Intelligent Data Analysis in Medicine and Pharmacology consists of selected (and thoroughly revised) papers presented at the First International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-96) held in Budapest in August 1996 as part of the 12th European Conference on Artificial Intelligence (ECAI-96), IDAMAP-96 was organized with the motivation to gather scientists and practitioners interested in computational data analysis methods applied to medicine and pharmacology, aimed at narrowing the increasing gap between excessive amounts of data stored in medical and pharmacological databases on the one hand, and the interpretation, understanding and effective use of stored data on the other hand. Besides the revised Workshop papers, the book contains a selection of contributions by invited authors. The expected readership of the book is researchers and practitioners interested in intelligent data analysis, data mining, and knowledge discovery in databases, particularly those who are interested in using these technologies in medicine and pharmacology. Researchers and students in artificial intelligence and statistics should find this book of interest as well. Finally, much of the presented material will be interesting to physicians and pharmacologists challenged by new computational technologies, or simply in need of effectively utilizing the overwhelming volumes of data collected as a result of improved computer support in their daily professional practice.
Download or read book Intelligent Data Analysis written by Deepak Gupta and published by John Wiley & Sons. This book was released on 2020-07-13 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Download or read book Intelligent Data Analysis written by Michael R. Berthold and published by Springer. This book was released on 2007-06-07 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Download or read book Big Data Analytics for Intelligent Healthcare Management written by Nilanjan Dey and published by Academic Press. This book was released on 2019-04-15 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more
Download or read book Intelligent Data Sensing and Processing for Health and Well being Applications written by Miguel Antonio Wister Ovando and published by Academic Press. This book was released on 2018-07-26 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Sensing and Processing for Health and Well-being Applications uniquely combines full exploration of the latest technologies for sensor-collected intelligence with detailed coverage of real-case applications for healthcare and well-being at home and in the workplace. Forward-thinking in its approach, the book presents concepts and technologies needed for the implementation of today's mobile, pervasive and ubiquitous systems, and for tomorrow's IoT and cyber-physical systems. Users will find a detailed overview of the fundamental concepts of gathering, processing and analyzing data from devices disseminated in the environment, as well as the latest proposals for collecting, processing and abstraction of data-sets. In addition, the book addresses algorithms, methods and technologies for diagnosis and informed decision-making for healthcare and well-being. Topics include emotional interface with ambient intelligence and emerging applications in detection and diagnosis of neurological diseases. Finally, the book explores the trends and challenges in an array of areas, such as applications for intelligent monitoring in the workplace for well-being, acquiring data traffic in cities to improve the assistance of first aiders, and applications for supporting the elderly at home. - Examines the latest applications and future directions for mobile data sensing in an array of health and well-being scenarios - Combines leading computing paradigms and technologies, development applications, empirical studies, and future trends in the multidisciplinary field of smart sensors, smart sensor networks, data analysis and machine intelligence methods - Features an analysis of security, privacy and ethical issues in smart sensor health and well-being applications - Equips readers interested in interdisciplinary projects in ubiquitous computing or pervasive computing and ambient intelligence with the latest trends and developments
Download or read book Artificial Intelligence and Big Data Analytics for Smart Healthcare written by Miltiadis Lytras and published by Academic Press. This book was released on 2021-10-22 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics written by Abhishek Kumar and published by CRC Press. This book was released on 2022-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.
Download or read book Big Data Analytics and Intelligence written by Poonam Tanwar and published by Emerald Group Publishing. This book was released on 2020-09-30 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
Download or read book Artificial Intelligence for Data Driven Medical Diagnosis written by Deepak Gupta and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects research works of data-driven medical diagnosis done via Artificial Intelligence based solutions, such as Machine Learning, Deep Learning and Intelligent Optimization. Physical devices powered with Artificial Intelligence are gaining importance in diagnosis and healthcare. Medical data from different sources can also be analyzed via Artificial Intelligence techniques for more effective results.
Download or read book Guide to Intelligent Data Analysis written by Michael R. Berthold and published by Springer Science & Business Media. This book was released on 2010-06-23 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Download or read book IoT Based Data Analytics for the Healthcare Industry written by Sanjay Kumar Singh and published by Academic Press. This book was released on 2020-11-07 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages
Download or read book Diagnostic Applications of Health Intelligence and Surveillance Systems written by Yadav, Divakar and published by IGI Global. This book was released on 2021-01-15 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health surveillance and intelligence play an important role in modern health systems as more data must be collected and analyzed. It is crucial that this data is interpreted and analyzed effectively and efficiently in order to assist with diagnoses and predictions. Diagnostic Applications of Health Intelligence and Surveillance Systems is an essential reference book that examines recent studies that are driving artificial intelligence in the health sector and helping practitioners to predict and diagnose diseases. Chapters within the book focus on health intelligence and how health surveillance data can be made useful and meaningful. Covering topics that include computational intelligence, data analytics, mobile health, and neural networks, this book is crucial for healthcare practitioners, IT specialists, academicians, researchers, and students.
Download or read book Intelligent Data Processing written by Vadim V. Strijov and published by Springer Nature. This book was released on 2019-11-15 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Data Processing, IDP 2016, held in Barcelona, Spain, in October 2016. The 11 revised full papers were carefully reviewed and selected from 52 submissions. The papers of this volume are organized in topical sections on machine learning theory with applications; intelligent data processing in life and social sciences; morphological and technological approaches to image analysis.
Download or read book Big Data and Artificial Intelligence for Healthcare Applications written by Ankur Saxena and published by CRC Press. This book was released on 2021-06-14 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a wide range of topics on the role of Artificial Intelligence, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. This book explores the applications in different areas of healthcare and highlights the current research. "Big Data and Artificial Intelligence for Healthcare Applications" covers healthcare big data analytics, mobile health and personalized medicine, clinical trial data management and presents how Artificial Intelligence can be used for early disease diagnosis prediction and prognosis. It also offers some case studies that describes the application of Artificial Intelligence and Machine Learning in healthcare. Researchers, healthcare professionals, data scientists, systems engineers, students, programmers, clinicians, and policymakers will find this book of interest.