EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Immunology of Virus Infections

Download or read book Mathematical Immunology of Virus Infections written by Gennady Bocharov and published by Springer. This book was released on 2018-06-12 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experimental and human infections and provide the reader with helpful exercises. The target audience primarily comprises researchers and graduate students in the field of mathematical biology who wish to be concisely introduced into mathematical immunology.

Book Mathematical Modelling of Immune Response in Infectious Diseases

Download or read book Mathematical Modelling of Immune Response in Infectious Diseases written by Guri I. Marchuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.

Book Mathematical Modeling of Virus Infections and Immune Responses

Download or read book Mathematical Modeling of Virus Infections and Immune Responses written by Kasia Anna Pawelek and published by . This book was released on 2012 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of the dissertation studies mathematical models for the HIV infection. such mathematical models have made considerable contributions to our understanding of HIV dynamics. Introducing time delays to HIV models brings challenges to both the mathematical analysis of the models and comparison of their predictions with patient data. We study recent models for HIV dynamics and incorporate two time delays, one represents the time needed for infected cells to produce virions after viral entry, and other other one is the time needed for the adaptive immune response to emerge to control viral replication. We begin the analysis of the model with a proof of the positivity and boundedness of the solutions, the local stability of the infection-free and infected steady states, and the uniform persistence of the system. By developing different Lyapunov functionals, we obtain conditions that ensure the global stability of the steady states. We also compare the model with two delays to viral load data from 10 patients during primary HIV-1 infection, and this allows us to estithe parameter values. The second part of the dissertation deals with mathematical models for the Influenza infection. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. We developed a mathematical model including both innate and adaptive immune responses, to study the within-host dynamics of equine influenza virus infection in horses. By comparing the predictions of the model with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection. These two topics form a contribution to our expanding knowledge of the HIV-1 and Influenza infections and immune responses.

Book Virus Dynamics   Mathematical Principles of Immunology and Virology

Download or read book Virus Dynamics Mathematical Principles of Immunology and Virology written by Martin Nowak and published by Oxford University Press, UK. This book was released on 2000-11-23 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking book describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals fascinating insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. Structured around the examples of HIV/AIDS and hepatitis B, Nowak and May show how mathematical models can help researchers to understand the detailed dynamics of infection and the effects of antiviral therapy. Models are developed to describe the dynamics of drug resistance, immune responses, viral evolution and mutation, and to optimise the design of therapy and vaccines. - ;We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study. - ;... an excellent introduction to a field that has the potential to advance substantially our understanding of the complex interplay between virus and host - Nature

Book Mathematical Modeling of the Immune System in Homeostasis  Infection and Disease

Download or read book Mathematical Modeling of the Immune System in Homeostasis Infection and Disease written by Gennady Bocharov and published by Frontiers Media SA. This book was released on 2020-02-24 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).

Book Virus Dynamics

    Book Details:
  • Author : Martin A. Nowak
  • Publisher : Oxford University Press
  • Release : 2000-11-23
  • ISBN : 0198504179
  • Pages : 253 pages

Download or read book Virus Dynamics written by Martin A. Nowak and published by Oxford University Press. This book was released on 2000-11-23 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals insights into the dynamics of viral & other infections.

Book Killer Cell Dynamics

    Book Details:
  • Author : Dominik Wodarz
  • Publisher : Springer Science & Business Media
  • Release : 2007-04-05
  • ISBN : 0387687335
  • Pages : 226 pages

Download or read book Killer Cell Dynamics written by Dominik Wodarz and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.

Book Mathematical Modelling and Analysis of Infectious Diseases

Download or read book Mathematical Modelling and Analysis of Infectious Diseases written by Khalid Hattaf and published by Springer Nature. This book was released on 2020-07-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses significant research and study topics related to mathematical modelling and analysis of infectious diseases. It includes several models and modelling approaches with different aims, such as identifying and analysing causes of occurrence and re-occurrence, causes of spreading, treatments and control strategies. A valuable resource for researchers, students, educators, scientists, professionals and practitioners interested in gaining insights into various aspects of infectious diseases using mathematical modelling and mathematical analysis, the book will also appeal to general readers wanting to understand the dynamics of various diseases and related issues. Key Features Mathematical models that describe population prevalence or incidence of infectious diseases Mathematical tools and techniques to analyse data on the incidence of infectious diseases Early detection and risk estimate models of infectious diseases Mathematical models that describe the transmission of infectious diseases and analyse data Dynamical analysis and control strategies for infectious diseases Studies comparing the utility of particular models in describing infected diseases-related issues such as social, health and economic

Book Mathematical Modeling Of Virus Infection  Ode pde Analysis In R

Download or read book Mathematical Modeling Of Virus Infection Ode pde Analysis In R written by William E Schiesser and published by World Scientific. This book was released on 2021-03-17 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two models for the spread and control of a virus are detailed in this book: The Lung/Respiratory System Model (LSM) and the SVIR (Susceptible-Vaccinated-Infected-Recovered) Model.The LSM gives the spatiotemporal distribution of four viral-related proteins: virus population density along the lung air passage, host cell primary infection protein (viral genetic material (VGM)) concentration, host cell secondary infection protein (VGM) concentration, and air stream virion population density.The model is executed for a single inhalation, and a series of inhalation/exhalation cycles. For the latter, the progression of the viral infection into the lung is a principal result.The SVIR is first formulated as a system of ordinary differential equations (ODEs) in time, then extended to a system of PDEs to account for spatial effects (spatiotemporal modeling).Principal outputs from the ODE/PDE models are the levels of vaccinations and infections. For the latter, the efficacy of the vaccine is a parameter that can be varied in a computer-based analysis of a vaccine therapy.The coding of the models is in R, a quality, open-source scientific computing system, and can be executed on modest computers. The R routines are available from a download link so that the example models can be executed without having to first study numerical methods and computer coding. The routines can then be applied to variations and extensions of the ODE/PDE models, such as changes in the parameters and the form of the model equations.

Book Immune system modeling and analysis

Download or read book Immune system modeling and analysis written by Ramit Mehr and published by Frontiers Media SA. This book was released on 2015-04-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid development of new methods for immunological data collection – from multicolor flow cytometry, through single-cell imaging, to deep sequencing – presents us now, for the first time, with the ability to analyze and compare large amounts of immunological data in health, aging and disease. The exponential growth of these datasets, however, challenges the theoretical immunology community to develop methods for data organization and analysis. Furthermore, the need to test hypotheses regarding immune function, and generate predictions regarding the outcomes of medical interventions, necessitates the development of mathematical and computational models covering processes on multiple scales, from the genetic and molecular to the cellular and system scales. The last few decades have seen the development of methods for presentation and analysis of clonal repertoires (those of T and B lymphocytes) and phenotypic (surface-marker based) repertoires of all lymphocyte types, and for modeling the intricate network of molecular and cellular interactions within the immune systems. This e-Book, which has first appeared as a ‘Frontiers in Immunology’ research topic, provides a comprehensive, online, open access snapshot of the current state of the art on immune system modeling and analysis.

Book Modeling and Control of Infectious Diseases in the Host

Download or read book Modeling and Control of Infectious Diseases in the Host written by Esteban A. Hernandez-Vargas and published by Academic Press. This book was released on 2019-02-15 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Control of Infectious Diseases in the Host: With MATLAB and R provides a holistic understanding of health and disease by presenting topics on quantitative decision-making that influence the development of drugs. The book presents modeling advances in different viral infections, dissecting detailed contributions of key players, along with their respective interactions. By combining tailored in vivo experiments and mathematical modeling approaches, the book clarifies the relative contributions of different underlying mechanisms within hosts of the most lethal viral infections, including HIV, influenza and Ebola. Illustrative examples for parameter fitting, modeling and control applications are explained using MATLAB and R. Provides a multi-scale framework to link within-host infection dynamics (individual level) to between-host transmission fitness (epidemiological level) in viral infectious diseases Includes PK/PD modeling and simulation approaches to improve efficiency and decision-making at preclinical development phases Presents a theoretic approach to schedule drug treatments

Book Mathematical Models of Virus Infection and the Immune System

Download or read book Mathematical Models of Virus Infection and the Immune System written by Barbara Bittner and published by . This book was released on 1999 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book COVID 19 Epidemiology and Virus Dynamics

Download or read book COVID 19 Epidemiology and Virus Dynamics written by Till D. Frank and published by Springer Nature. This book was released on 2022-03-30 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the COVID-19 pandemic from a quantitative perspective based on mathematical models and methods largely used in nonlinear physics. It aims to study COVID-19 epidemics in countries and SARS-CoV-2 infections in individuals from the nonlinear physics perspective and to model explicitly COVID-19 data observed in countries and virus load data observed in COVID-19 patients. The first part of this book provides a short technical introduction into amplitude spaces given by eigenvalues, eigenvectors, and amplitudes.In the second part of the book, mathematical models of epidemiology are introduced such as the SIR and SEIR models and applied to describe COVID-19 epidemics in various countries around the world. In the third part of the book, virus dynamics models are considered and applied to infections in COVID-19 patients. This book is written for researchers, modellers, and graduate students in physics and medicine, epidemiology and virology, biology, applied mathematics, and computer sciences. This book identifies the relevant mechanisms behind past COVID-19 outbreaks and in doing so can help efforts to stop future COVID-19 outbreaks and other epidemic outbreaks. Likewise, this book points out the physics underlying SARS-CoV-2 infections in patients and in doing so supports a physics perspective to address human immune reactions to SARS-CoV-2 infections and similar virus infections.

Book Moving From COVID 19 Mathematical Models to Vaccine Design  Theory  Practice and Experiences

Download or read book Moving From COVID 19 Mathematical Models to Vaccine Design Theory Practice and Experiences written by Andrés Fraguela-Collar and published by Bentham Science Publishers. This book was released on 2022-09-05 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium represents a set of guides to understanding the challenging scientific, epidemiological, clinical, social, and economic phenomenon that is represented by the COVID-19 pandemic. The book explains the mathematical modeling of COVID-19 infection, with emphasis on traditional epidemiological principles. It represents a rigorous, comprehensive and multidisciplinary approach to a complex phenomenon. The chapters take into account the knowledge arising from different disciplines (epidemiology, pathophysiology, immunology, medicine, biology, vaccine development, etc.). It also covers COVID-19 data analysis, giving the reader a perspective of statistics and data science, and includes a discussion about social and economic issues of the pandemic. Each chapter is devoted to a specific topic, and is contributed by experts in epidemiology. Because of its multidisciplinary nature, this book is intended as a reference on mathematical models and basic immunotherapy for COVID-19 for a broad community of readers, from scholars who have scientific training, to general readers who have an interest in the disease.

Book Modeling Infectious Diseases in Humans and Animals

Download or read book Modeling Infectious Diseases in Humans and Animals written by Matt J. Keeling and published by Princeton University Press. This book was released on 2008 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides information on simple epidemic models, hosts heterogeneities, temporally forced models, stochastic dynamics, spatial models and controlling infectious diseases.

Book COVID 19  Prediction  Decision Making  and its Impacts

Download or read book COVID 19 Prediction Decision Making and its Impacts written by K.C. Santosh and published by Springer Nature. This book was released on 2020-12-11 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to outline the issues of AI and COVID-19, involving predictions,medical support decision-making, and possible impact on human life. Starting withmajor COVID-19 issues and challenges, it takes possible AI-based solutions forseveral problems, such as public health surveillance, early (epidemic) prediction,COVID-19 positive case detection, and robotics integration against COVID-19.Beside mathematical modeling, it includes the necessity of changes in innovationsand possible COVID-19 impacts. The book covers a clear understanding of AI-driven tools and techniques, where pattern recognition, anomaly detection, machinelearning, and data analytics are considered. It aims to include the wide range ofaudiences from computer science and engineering to healthcare professionals.

Book Mathematical Models in Immunology

Download or read book Mathematical Models in Immunology written by Guriĭ Ivanovich Marchuk and published by Springer. This book was released on 1983 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: