EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Discrete Math for Computer Science

Download or read book Fundamentals of Discrete Math for Computer Science written by Tom Jenkyns and published by Springer Science & Business Media. This book was released on 2012-08-28 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.

Book A Logical Approach to Discrete Math

Download or read book A Logical Approach to Discrete Math written by David Gries and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, the authors strive to change the way logic and discrete math are taught in computer science and mathematics: while many books treat logic simply as another topic of study, this one is unique in its willingness to go one step further. The book traets logic as a basic tool which may be applied in essentially every other area.

Book Discrete Mathematics with Proof

Download or read book Discrete Mathematics with Proof written by Eric Gossett and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.

Book Discrete Mathematics in the Schools

Download or read book Discrete Mathematics in the Schools written by Joseph G. Rosenstein and published by American Mathematical Soc.. This book was released on 2000 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles written by experienced primary, secondary, and collegiate educators. It explains why discrete mathematics should be taught in K-12 classrooms and offers guidance on how to do so. It offers school and district curriculum leaders material that addresses how discrete mathematics can be introduced into their curricula.

Book Graph Theoretic Concepts in Computer Science

Download or read book Graph Theoretic Concepts in Computer Science written by Ulrik Brandes and published by Springer. This book was released on 2003-07-31 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 26th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2000) was held at Waldhaus Jakob, in Konstanz, Germany, on 15{ 17 June 2000. It was organized by the Algorithms and Data Structures Group of the Department of Computer and Information Science, University of K- stanz, and sponsored by Deutsche Forschungsgemeinschaft (DFG) and Univ- sit ̈atsgesellschaft Konstanz. The workshop aims at uniting theory and practice by demonstrating how graph-theoretic concepts can be applied to various areas in computer science, or by extracting new problems from applications. The goal is to present recent research results and to identify and explore directions for future research. The workshop looks back on a remarkable tradition of more than a quarter of a century. Previous Workshops have been organized in various places in Europe, and submissions come from all over the world. This year, 57 attendees from 13 di erent countries gathered in the relaxing atmosphere of Lake Constance, also known as the Bodensee. Out of 51 submis- ons, the program committee carefully selected 26 papers for presentation at the workshop. This selection re?ects current research directions, among them graph and network algorithms and their complexity, algorithms for special graph cl- ses, communication networks, and distributed algorithms. The present volume contains these papers together with the survey presented in an invited lecture by Ingo Wegener (University of Dortmund) and an extended abstract of the invited lecture given by Emo Welzl (ETH Zuric ̈ h).

Book Discrete Mathematics

    Book Details:
  • Author : Oscar Levin
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2016-08-16
  • ISBN : 9781534970748
  • Pages : 342 pages

Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

Book Handbook of Elliptic and Hyperelliptic Curve Cryptography

Download or read book Handbook of Elliptic and Hyperelliptic Curve Cryptography written by Henri Cohen and published by CRC Press. This book was released on 2005-07-19 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discrete logarithm problem based on elliptic and hyperelliptic curves has gained a lot of popularity as a cryptographic primitive. The main reason is that no subexponential algorithm for computing discrete logarithms on small genus curves is currently available, except in very special cases. Therefore curve-based cryptosystems require much smaller key sizes than RSA to attain the same security level. This makes them particularly attractive for implementations on memory-restricted devices like smart cards and in high-security applications. The Handbook of Elliptic and Hyperelliptic Curve Cryptography introduces the theory and algorithms involved in curve-based cryptography. After a very detailed exposition of the mathematical background, it provides ready-to-implement algorithms for the group operations and computation of pairings. It explores methods for point counting and constructing curves with the complex multiplication method and provides the algorithms in an explicit manner. It also surveys generic methods to compute discrete logarithms and details index calculus methods for hyperelliptic curves. For some special curves the discrete logarithm problem can be transferred to an easier one; the consequences are explained and suggestions for good choices are given. The authors present applications to protocols for discrete-logarithm-based systems (including bilinear structures) and explain the use of elliptic and hyperelliptic curves in factorization and primality proving. Two chapters explore their design and efficient implementations in smart cards. Practical and theoretical aspects of side-channel attacks and countermeasures and a chapter devoted to (pseudo-)random number generation round off the exposition. The broad coverage of all- important areas makes this book a complete handbook of elliptic and hyperelliptic curve cryptography and an invaluable reference to anyone interested in this exciting field.

Book Foundations of Discrete Mathematics

Download or read book Foundations of Discrete Mathematics written by K. D. Joshi and published by New Age International. This book was released on 1989 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.

Book Idempotent Mathematics and Mathematical Physics

Download or read book Idempotent Mathematics and Mathematical Physics written by Grigoriĭ Lazarevich Litvinov and published by American Mathematical Soc.. This book was released on 2005 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Idempotent mathematics is a rapidly developing new branch of the mathematical sciences that is closely related to mathematical physics. The existing literature on the subject is vast and includes numerous books and journal papers. A workshop was organized at the Erwin Schrodinger Institute for Mathematical Physics (Vienna) to give a snapshot of modern idempotent mathematics. This volume contains articles stemming from that event. Also included is an introductory paper by G. Litvinov and additional invited contributions. The resulting volume presents a comprehensive overview of the state of the art. It is suitable for graduate students and researchers interested in idempotent mathematics and tropical mathematics.

Book Stochastic Games and Related Concepts

Download or read book Stochastic Games and Related Concepts written by T. Parthasarathy and published by Springer Nature. This book was released on 2020-12-08 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses stochastic game theory and related concepts. Topics focused upon in the book include matrix games, finite, infinite, and undiscounted stochastic games, n-player cooperative games, minimax theorem, and more. In addition to important definitions and theorems, the book provides readers with a range of problem-solving techniques and exercises. This book is of value to graduate students and readers of probability and statistics alike.

Book BULLETIN TOME CVII

    Book Details:
  • Author :
  • Publisher : Srpska akademija nauka i umetnosti
  • Release : 1994-05-28
  • ISBN :
  • Pages : 82 pages

Download or read book BULLETIN TOME CVII written by and published by Srpska akademija nauka i umetnosti. This book was released on 1994-05-28 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: YU ISSN: 0001-4184 Ово дело је лиценцирано под условима лиценце Creative Commons - Attribution-Noncommercial-No Derivative Works 3.0 Serbia http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.en

Book Mathematical Game Theory and Applications

Download or read book Mathematical Game Theory and Applications written by Vladimir Mazalov and published by John Wiley & Sons. This book was released on 2014-07-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Game Theory and Applications Mathematical Game Theory and Applications An authoritative and quantitative approach to modern game theory with applications from economics, political science, military science and finance. Mathematical Game Theory and Applications combines both the theoretical and mathematical foundations of game theory with a series of complex applications along with topics presented in a logical progression to achieve a unified presentation of research results. This book covers topics such as two-person games in strategic form, zero-sum games, N-person non-cooperative games in strategic form, two-person games in extensive form, parlor and sport games, bargaining theory, best-choice games, co-operative games and dynamic games. Several classical models used in economics are presented which include Cournot, Bertrand, Hotelling and Stackelberg as well as coverage of modern branches of game theory such as negotiation models, potential games, parlor games and best choice games. Mathematical Game Theory and Applications: Presents a good balance of both theoretical foundations and complex applications of game theory. Features an in-depth analysis of parlor and sport games, networking games, and bargaining models. Provides fundamental results in new branches of game theory, best choice games, network games and dynamic games. Presents numerous examples and exercises along with detailed solutions at the end of each chapter. Is supported by an accompanying website featuring course slides and lecture content. Covering a host of important topics, this book provides a research springboard for graduate students and a reference for researchers who might be working in the areas of applied mathematics, operations research, computer science or economical cybernetics.

Book A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

Download or read book A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences written by K. Glazek and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).

Book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms

Download or read book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms written by SIAM Activity Group on Discrete Mathematics and published by SIAM. This book was released on 2006-01-01 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symposium held in Miami, Florida, January 22–24, 2006.This symposium is jointly sponsored by the ACM Special Interest Group on Algorithms and Computation Theory and the SIAM Activity Group on Discrete Mathematics.Contents Preface; Acknowledgments; Session 1A: Confronting Hardness Using a Hybrid Approach, Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo; A New Approach to Proving Upper Bounds for MAX-2-SAT, Arist Kojevnikov and Alexander S. Kulikov, Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm, Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch; A Polynomial Algorithm to Find an Independent Set of Maximum Weight in a Fork-Free Graph, Vadim V. Lozin and Martin Milanic; The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity, Wolfgang W. Bein, Mordecai J. Golin, Larry L. Larmore, and Yan Zhang; Session 1B: Local Versus Global Properties of Metric Spaces, Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala; Directed Metrics and Directed Graph Partitioning Problems, Moses Charikar, Konstantin Makarychev, and Yury Makarychev; Improved Embeddings of Graph Metrics into Random Trees, Kedar Dhamdhere, Anupam Gupta, and Harald Räcke; Small Hop-diameter Sparse Spanners for Doubling Metrics, T-H. Hubert Chan and Anupam Gupta; Metric Cotype, Manor Mendel and Assaf Naor; Session 1C: On Nash Equilibria for a Network Creation Game, Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty; Approximating Unique Games, Anupam Gupta and Kunal Talwar; Computing Sequential Equilibria for Two-Player Games, Peter Bro Miltersen and Troels Bjerre Sørensen; A Deterministic Subexponential Algorithm for Solving Parity Games, Marcin Jurdzinski, Mike Paterson, and Uri Zwick; Finding Nucleolus of Flow Game, Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun, Session 2: Invited Plenary Abstract: Predicting the “Unpredictable”, Rakesh V. Vohra, Northwestern University; Session 3A: A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem, Sven Koenig, Apurva Mudgal, and Craig Tovey; An Asymptotic Approximation Algorithm for 3D-Strip Packing, Klaus Jansen and Roberto Solis-Oba; Facility Location with Hierarchical Facility Costs, Zoya Svitkina and Éva Tardos; Combination Can Be Hard: Approximability of the Unique Coverage Problem, Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R. Salavatipour; Computing Steiner Minimum Trees in Hamming Metric, Ernst Althaus and Rouven Naujoks; Session 3B: Robust Shape Fitting via Peeling and Grating Coresets, Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu; Tightening Non-Simple Paths and Cycles on Surfaces, Éric Colin de Verdière and Jeff Erickson; Anisotropic Surface Meshing, Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger; Simultaneous Diagonal Flips in Plane Triangulations, Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood; Morphing Orthogonal Planar Graph Drawings, Anna Lubiw, Mark Petrick, and Michael Spriggs; Session 3C: Overhang, Mike Paterson and Uri Zwick; On the Capacity of Information Networks, Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman; Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding, Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Patrascu; Self-Improving Algorithms, Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu; Cake Cutting Really is Not a Piece of Cake, Jeff Edmonds and Kirk Pruhs; Session 4A: Testing Triangle-Freeness in General Graphs, Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron; Constraint Solving via Fractional Edge Covers, Martin Grohe and Dániel Marx; Testing Graph Isomorphism, Eldar Fischer and Arie Matsliah; Efficient Construction of Unit Circular-Arc Models, Min Chih Lin and Jayme L. Szwarcfiter, On The Chromatic Number of Some Geometric Hypergraphs, Shakhar Smorodinsky; Session 4B: A Robust Maximum Completion Time Measure for Scheduling, Moses Charikar and Samir Khuller; Extra Unit-Speed Machines are Almost as Powerful as Speedy Machines for Competitive Flow Time Scheduling, Ho-Leung Chan, Tak-Wah Lam, and Kin-Shing Liu; Improved Approximation Algorithms for Broadcast Scheduling, Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko; Distributed Selfish Load Balancing, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul Goldberg, Zengjian Hu, and Russell Martin; Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic Power Management, Philippe Baptiste; Session 4C: Rank/Select Operations on Large Alphabets: A Tool for Text Indexing, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao; O(log log n)-Competitive Dynamic Binary Search Trees, Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator; The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure, Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun; Design of Data Structures for Mergeable Trees, Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck; Implicit Dictionaries with O(1) Modifications per Update and Fast Search, Gianni Franceschini and J. Ian Munro; Session 5A: Sampling Binary Contingency Tables with a Greedy Start, Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda; Asymmetric Balanced Allocation with Simple Hash Functions, Philipp Woelfel; Balanced Allocation on Graphs, Krishnaram Kenthapadi and Rina Panigrahy; Superiority and Complexity of the Spaced Seeds, Ming Li, Bin Ma, and Louxin Zhang; Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time, Michael Krivelevich and Dan Vilenchik; Session 5B: Analysis of Incomplete Data and an Intrinsic-Dimension Helly Theorem, Jie Gao, Michael Langberg, and Leonard J. Schulman; Finding Large Sticks and Potatoes in Polygons, Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon; Randomized Incremental Construction of Three-Dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting, Haim Kaplan and Micha Sharir; Vertical Ray Shooting and Computing Depth Orders for Fat Objects, Mark de Berg and Chris Gray; On the Number of Plane Graphs, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado, and Hannes Krasser; Session 5C: All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time, Timothy M. Chan; An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph, Glencora Borradaile and Philip Klein; A Simple GAP-Canceling Algorithm for the Generalized Maximum Flow Problem, Mateo Restrepo and David P. Williamson; Four Point Conditions and Exponential Neighborhoods for Symmetric TSP, Vladimir Deineko, Bettina Klinz, and Gerhard J. Woeginger; Upper Degree-Constrained Partial Orientations, Harold N. Gabow; Session 7A: On the Tandem Duplication-Random Loss Model of Genome Rearrangement, Kamalika Chaudhuri, Kevin Chen, Radu Mihaescu, and Satish Rao; Reducing Tile Complexity for Self-Assembly Through Temperature Programming, Ming-Yang Kao and Robert Schweller; Cache-Oblivious String Dictionaries, Gerth Stølting Brodal and Rolf Fagerberg; Cache-Oblivious Dynamic Programming, Rezaul Alam Chowdhury and Vijaya Ramachandran; A Computational Study of External-Memory BFS Algorithms, Deepak Ajwani, Roman Dementiev, and Ulrich Meyer; Session 7B: Tight Approximation Algorithms for Maximum General Assignment Problems, Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko; Approximating the k-Multicut Problem, Daniel Golovin, Viswanath Nagarajan, and Mohit Singh; The Prize-Collecting Generalized Steiner Tree Problem Via A New Approach Of Primal-Dual Schema, Mohammad Taghi Hajiaghayi and Kamal Jain; 8/7-Approximation Algorithm for (1,2)-TSP, Piotr Berman and Marek Karpinski; Improved Lower and Upper Bounds for Universal TSP in Planar Metrics, Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton; Session 7C: Leontief Economies Encode NonZero Sum Two-Player Games, B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye; Bottleneck Links, Variable Demand, and the Tragedy of the Commons, Richard Cole, Yevgeniy Dodis, and Tim Roughgarden; The Complexity of Quantitative Concurrent Parity Games, Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger; Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints, Kamal Jain and Kasturi Varadarajan; Session 8A: Approximation Algorithms for Wavelet Transform Coding of Data Streams, Sudipto Guha and Boulos Harb; Simpler Algorithm for Estimating Frequency Moments of Data Streams, Lakshimath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha; Trading Off Space for Passes in Graph Streaming Problems, Camil Demetrescu, Irene Finocchi, and Andrea Ribichini; Maintaining Significant Stream Statistics over Sliding Windows, L.K. Lee and H.F. Ting; Streaming and Sublinear Approximation of Entropy and Information Distances, Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian; Session 8B: FPTAS for Mixed-Integer Polynomial Optimization with a Fixed Number of Variables, J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel; Linear Programming and Unique Sink Orientations, Bernd Gärtner and Ingo Schurr; Generating All Vertices of a Polyhedron is Hard, Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich; A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs, Anthony Man-Cho So and Yinyu Ye; Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments, Don Coppersmith, Lisa Fleischer, and Atri Rudra; Session 8C: Weighted Isotonic Regression under L1 Norm, Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang; Oblivious String Embeddings and Edit Distance Approximations, Tugkan Batu, Funda Ergun, and Cenk Sahinalp0898716012\\This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.

Book Resources in education

Download or read book Resources in education written by and published by . This book was released on 1986-04 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Classical and Quantum Nonlinear Integrable Systems

Download or read book Classical and Quantum Nonlinear Integrable Systems written by A Kundu and published by CRC Press. This book was released on 2019-04-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering both classical and quantum models, nonlinear integrable systems are of considerable theoretical and practical interest, with applications over a wide range of topics, including water waves, pin models, nonlinear optics, correlated electron systems, plasma physics, and reaction-diffusion processes. Comprising one part on classical theories

Book Statistical Models for Test Equating  Scaling  and Linking

Download or read book Statistical Models for Test Equating Scaling and Linking written by Alina von Davier and published by Springer Science & Business Media. This book was released on 2010-10-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to emphasize the formal statistical features of the practice of equating, linking, and scaling. The book encourages the view and discusses the quality of the equating results from the statistical perspective (new models, robustness, fit, testing hypotheses, statistical monitoring) as opposed to placing the focus on the policy and the implications, which although very important, represent a different side of the equating practice. The book contributes to establishing “equating” as a theoretical field, a view that has not been offered often before. The tradition in the practice of equating has been to present the knowledge and skills needed as a craft, which implies that only with years of experience under the guidance of a knowledgeable practitioner could one acquire the required skills. This book challenges this view by indicating how a good equating framework, a sound understanding of the assumptions that underlie the psychometric models, and the use of statistical tests and statistical process control tools can help the practitioner navigate the difficult decisions in choosing the final equating function. This book provides a valuable reference for several groups: (a) statisticians and psychometricians interested in the theory behind equating methods, in the use of model-based statistical methods for data smoothing, and in the evaluation of the equating results in applied work; (b) practitioners who need to equate tests, including those with these responsibilities in testing companies, state testing agencies, and school districts; and (c) instructors in psychometric, measurement, and psychology programs.