Download or read book Materials Science of Membranes for Gas and Vapor Separation written by Benny Freeman and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Science of Membranes for Gas and Vapor Separation is a one-stop reference for the latest advances in membrane-based separation and technology. Put together by an international team of contributors and academia, the book focuses on the advances in both theoretical and experimental materials science and engineering, as well as progress in membrane technology. Special attention is given to comparing polymer and inorganic/organic separation and other emerging applications such as sensors. This book aims to give a balanced treatment of the subject area, allowing the reader an excellent overall perspective of new theoretical results that can be applied to advanced materials, as well as the separation of polymers. The contributions will provide a compact source of relevant and timely information and will be of interest to government, industrial and academic polymer chemists, chemical engineers and materials scientists, as well as an ideal introduction to students.
Download or read book Membrane Gas Separation written by Benny Freeman and published by John Wiley & Sons. This book was released on 2011-06-20 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas separation membranes offer a number of benefits over other separation technologies, and they play an increasingly important role in reducing the environmental impacts and costs of many industrial processes. This book describes recent and emerging results in membrane gas separation, including highlights of nanoscience and technology, novel polymeric and inorganic membrane materials, new membrane approaches to solve environmental problems e.g. greenhouse gases, aspects of membrane engineering, and recent achievements in industrial gas separation. It includes: Hyperbranched polyimides, amorphous glassy polymers and perfluorinated copolymers Nanocomposite (mixed matrix) membranes Polymeric magnetic membranes Sequestration of CO2 to reduce global warming Industrial applications of gas separation Developed from sessions of the most recent International Congress on Membranes and Membrane Processes, Membrane Gas Separation gives a snapshot of the current situation, and presents both fundamental results and applied achievements.
Download or read book Polymeric Gas Separation Membranes written by D.R. Paul and published by CRC Press. This book was released on 2018-05-04 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymeric Gas Separation Membranes is an outstanding reference devoted to discussing the separation of gases by membranes. An international team of contributors examines the latest findings of membrane science and practical applications and explores the complete spectrum of relevant topics from fundamentals of gas sorption and diffusion in polymers to vapor separation from air. They also compare membrane processes with other separation technologies. This essential book will be valuable to all practitioners and students in membrane science and technology.
Download or read book Membrane Materials for Gas and Separation written by Yuri Yampolskii and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both. Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares
Download or read book Synthetic Membranes and Membrane Separation Processes written by Takeshi Matsuura and published by CRC Press. This book was released on 1993-12-17 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
Download or read book Microporous Materials for Separation Membranes written by Xiaoqin Zou and published by John Wiley & Sons. This book was released on 2019-09-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to membrane separation based on a variety of porous materials with promising separation applications Microporous Materials for Separation Membranes offers an in-depth guide that explores microporous materials? potential for membrane applications. The authors?two experts on the topic?examine a wide range of porous materials that have application potential including: microporous silica, porous carbons, zeolites, metal-organic frameworks (MOFs), and porous organic frameworks (POFs). Comprehensive in scope, the book covers a broad range of topics on membrane separations such as: hydrogen recovery, carbon dioxide capture, air purification, hydrocarbon separation, pervaporation, and water treatment. In addition, this up-to-date resource explores the most recent materials for preparing microporous membranes and explores the most promising applications for industrial use. This important book: -Examines the use of microporous materials as membranes to perform with different gases and liquids -Offers an overview of the basic knowledge of membrane separation and an intense examination of separations -Describes the state-of-the-art of membrane separation with porous materials -Highlights the most promising applications of industrial interest Written for scientists working in the fields of membranes, gas and liquid, Microporous Materials for Separation Membranes offers a valuable guide to the potential of microporous materials for membrane applications.
Download or read book Gas Separation Membranes written by Ahmad Fauzi Ismail and published by Springer. This book was released on 2015-04-28 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.
Download or read book Membrane Separations Technology written by R.D. Noble and published by Elsevier. This book was released on 1995-01-17 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually.The main objective of this book is to present the principles and applications of a variety of membrane separation processes from the unique perspectives of investigators who have made important contributions to their fields. Another objective is to provide the reader with an authoritative resource on various aspects of this rapidly growing technology. The text can be used by someone who wishes to learn about a general area of application as well as by the knowledgeable person seeking more detailed information.
Download or read book Synthetic Polymeric Membranes for Advanced Water Treatment Gas Separation and Energy Sustainability written by Ahmad Fauzi Ismail and published by Elsevier. This book was released on 2020-06 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability is a cutting-edge guide that focuses on advanced water treatment applications, covering oily wastewater treatment, desalination, removal of dyes and pigments, photodegradation of organic hazardous materials, heavy metal removal, removal and recovery of nutrients, and volatile organic compounds. Other sections examine the area of gas separation, including acidic gas removal, oxygen enrichment, gas and vapor separation, hydrogen separation, and gas sensing. Final sections cover applications for sustainable energy usage, including the use of synthetic polymer membranes in proton exchange membrane fuel cells (PEMFCs), and more. This is a highly valuable guide for researchers, scientists, and advanced students, working with polymer membranes and films, and across polymer science, polymer chemistry, materials science, chemical e Explains the design, preparation and characterization of synthetic polymer-based membranes for advanced applications Provides a clear picture of the state-of-the-art in the field, including novel fabrication approaches and the latest advances in physico-chemical characterizations Supports the development and implementation of innovative, sustainable solutions to water treatment, gas separation and energy devices
Download or read book Materials for Carbon Capture written by De-en Jiang and published by John Wiley & Sons. This book was released on 2020-02-25 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.
Download or read book Metal Organic Framework Materials written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2014-09-19 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc
Download or read book Membrane Technology and Applications written by Richard W. Baker and published by John Wiley & Sons. This book was released on 2004-05-31 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.
Download or read book Carbon Membrane Technology written by Xuezhong He and published by CRC Press. This book was released on 2020-11-25 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon membranes have great advantages of strong mechanical strength and high chemical stabilities, as well as high separation performance to reach the industrial attractive region. Further improvement on membrane performance can potentially offset the relatively high production cost compared to polymeric membranes. However, there are still some challenges related to fabrication of asymmetric carbon membranes, the controlling of structure and pore-size and module up-scaling for commercial application. The aim of this book is to provide the fundamentals on carbon membrane materials for the young researchers and engineers to develop frontier membrane materials for energy efficient separation process. This book describes the status and perspectives of both self-supported and supported carbon membranes from fundamentals to applications. The key steps on the development of high performance carbon membranes including precursor selection, tuning carbon membrane structure and regeneration are discussed. In the end, different potential applications both in gas and liquids separation are well described, and the future directions for carbon membrane development were pointed out. To this end, membrane science and engineering are set to play crucial roles as enabling technologies to provide energy efficient and cost-effective future solutions for energy and environment related processes. Based on this approach the research projects which are trying to find attractive carbon materials in our days are many. The published papers, per year, in the topic of carbon membranes, especially for biogas upgrading, natural gas sweetening and hydrogen purification, are numerous with very high impact. However, only few are the books which include relevant to the topic of carbon membrane technology. This book offers the condensed and interdisciplinary knowledge on carbon membranes, and provides the opportunity to the scientists who are working in the field of carbon membrane technology for gas and liquid separations to present, share, and discuss their contributions within the membrane community.
Download or read book Transport Properties of Polymeric Membranes written by Sabu Thomas and published by Elsevier. This book was released on 2017-11-20 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport Properties of Polymeric Membranes is an edited collection of papers that covers, in depth, many of the recent technical research accomplishments in transport characteristics through polymers and their applications. Using the transport through polymer membranes method leads to high separation efficiency, low running costs, and simple operating procedures compared to conventional separation methods. This book provides grounding in fundamentals and applications to give you all the information you need on using this method. This book discusses the different types of polymer, their blends, composites, nanocomposites and their applications in the field of liquid, gas and vapor transport. Some topics of note include modern trends and applications of polymer nanocomposites in solvent, vapor and gas transport; fundamentals and measurement techniques for gas and vapor transport in polymers; and transport properties of hydrogels. This handpicked selection of topics, and the combined expertise of contributors from global industry, academia, government and private research organizations, make this book an outstanding reference for anyone involved in the field of polymer membranes. - Presents current trends in the field of transport of liquid, gas and vapor through various polymeric systems - Features case studies focused on industrial applications of membrane technology, along with fundamentals of transport and materials - Helps readers quickly look up a particular technique to learn key points, capabilities and drawbacks
Download or read book Modeling in Membranes and Membrane Based Processes written by Anirban Roy and published by John Wiley & Sons. This book was released on 2020-04-07 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Modeling in Membranes and Membrane-Based Processes is based on the idea of developing a reference which will cover most relevant and “state-of-the-art” approaches in membrane modeling. This book explores almost every major aspect of modeling and the techniques applied in membrane separation studies and applications. This includes first principle-based models, thermodynamics models, computational fluid dynamics simulations, molecular dynamics simulations, and artificial intelligence-based modeling for membrane separation processes. These models have been discussed in light of various applications ranging from desalination to gas separation. In addition, this breakthrough new volume covers the fundamentals of polymer membrane pore formation mechanisms, covering not only a wide range of modeling techniques, but also has various facets of membrane-based applications. Thus, this book can be an excellent source for a holistic perspective on membranes in general, as well as a comprehensive and valuable reference work. Whether a veteran engineer in the field or lab or a student in chemical or process engineering, this latest volume in the “Advances in Membrane Processes” is a must-have, along with the first book in the series, Membrane Processes, also available from Wiley-Scrivener.
Download or read book Membranes For Gas Separations written by Moises A Carreon and published by World Scientific. This book was released on 2017-08-11 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level.
Download or read book Introduction to Membrane Science and Technology written by Heinrich Strathmann and published by John Wiley & Sons. This book was released on 2011-10-17 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a dedicated lecturer and leading membrane scientist, who has worked both in academia and industry, this advanced textbook provides an impressive overview of all aspects of membranes and their applications. Together with numerous industrial case studies, practical examples and questions, the book provides an excellent and comprehensive introduction to the topic. Advanced students as well as process and chemical engineers working in industry will profit from this resource. A significant feature of the book is the treatment of more recently developed membranes and their applications in energy conversion, biomedical components, controlled release devices and environmental engineering with an indication of the present and future commercial impact. The solutions to the questions in the book can be found under http://www.wiley-vch.de/publish/en/books/ISBN3-537-32451-8/ From the Contents: * Introduction * Fundamentals * Membrane Preparation and Characterization * Principles of Membrane Separation Processes * Membrane Modules and Concentration Polarization * Membrane Process Design and Operation