EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Rational Points on Elliptic Curves

Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Book Rational Points on Varieties

Download or read book Rational Points on Varieties written by Bjorn Poonen and published by American Mathematical Soc.. This book was released on 2017-12-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Book Many Rational Points

    Book Details:
  • Author : N.E. Hurt
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 9401702519
  • Pages : 368 pages

Download or read book Many Rational Points written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a source book of examples with relationships to advanced topics regarding Sato-Tate conjectures, Eichler-Selberg trace formula, Katz-Sarnak conjectures and Hecke operators." "The book will be of use to mathematicians, physicists and engineers interested in the mathematical methods of algebraic geometry as they apply to coding theory and cryptography."--Jacket

Book Rational Points on Modular Elliptic Curves

Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Book Rational Points on Algebraic Varieties

Download or read book Rational Points on Algebraic Varieties written by Emmanuel Peyre and published by Birkhäuser. This book was released on 2012-12-06 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of rational and integral points on higher-dimensional algebraic varieties. It contains carefully selected research papers addressing the arithmetic geometry of varieties which are not of general type, with an emphasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The present volume gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric constructions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups.

Book Rational Points on Curves Over Finite Fields

Download or read book Rational Points on Curves Over Finite Fields written by Harald Niederreiter and published by Cambridge University Press. This book was released on 2001-06-14 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.

Book Diophantine Geometry

    Book Details:
  • Author : Marc Hindry
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-01
  • ISBN : 1461212103
  • Pages : 574 pages

Download or read book Diophantine Geometry written by Marc Hindry and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Book Elementary Theory of Numbers

Download or read book Elementary Theory of Numbers written by W. Sierpinski and published by Elsevier. This book was released on 1988-02-01 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian integers.

Book Arakelov Geometry and Diophantine Applications

Download or read book Arakelov Geometry and Diophantine Applications written by Emmanuel Peyre and published by Springer Nature. This book was released on 2021-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Book From a Rational Point of View

Download or read book From a Rational Point of View written by Tim Henning and published by Oxford University Press. This book was released on 2018 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tim Henning applies insights from the philosophy of language and formal semantics to problems in practical philosophy, and solves notorious puzzles about the reasons we have, what it is rational for us to do, and what we ought to do. He offers a more unified understanding of normative and practical discourse.

Book The Arithmetic of Elliptic Curves

Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Book An Invitation to Quantum Cohomology

Download or read book An Invitation to Quantum Cohomology written by Joachim Kock and published by Springer Science & Business Media. This book was released on 2007-12-27 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory

Book Numbers and Geometry

    Book Details:
  • Author : John Stillwell
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461206871
  • Pages : 348 pages

Download or read book Numbers and Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.

Book Fundamentals of Diophantine Geometry

Download or read book Fundamentals of Diophantine Geometry written by S. Lang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

Book Introduction to Number Theory

Download or read book Introduction to Number Theory written by L.-K. Hua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustra tions, broadcasting, reproductiOli by photocopying machine or similar means, and storage in data banks. Under {sect} 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "VerwertungsgeselIschaft Wort", Munich. © Springer-Verlag Berlin Heidelberg 1982 Softcover reprint of the hardcover 1st edition 1982 Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl. 214113140-5432 I 0 Preface to the English Edition The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points

Book Exploring the Number Jungle  A Journey into Diophantine Analysis

Download or read book Exploring the Number Jungle A Journey into Diophantine Analysis written by Edward B. Burger and published by American Mathematical Soc.. This book was released on 2000 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The minimal background requirements and the author's fresh approach make this book enjoyable and accessible to a wide range of students, mathematicians, and fans of number theory."--BOOK JACKET.

Book Number Theory

    Book Details:
  • Author : R.P. Bambah
  • Publisher : Birkhäuser
  • Release : 2012-12-06
  • ISBN : 303487023X
  • Pages : 525 pages

Download or read book Number Theory written by R.P. Bambah and published by Birkhäuser. This book was released on 2012-12-06 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.