EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Magnetic Field Effects in Low Dimensional Quantum Magnets

Download or read book Magnetic Field Effects in Low Dimensional Quantum Magnets written by Adam Iaizzi and published by Springer. This book was released on 2018-11-28 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is a tour-de-force combination of analytic and computational results clarifying and resolving important questions about the nature of quantum phase transitions in one- and two-dimensional magnetic systems. The author presents a comprehensive study of a low-dimensional spin-half quantum antiferromagnet (the J-Q model) in the presence of a magnetic field in both one and two dimensions, demonstrating the causes of metamagnetism in such systems and providing direct evidence of fractionalized excitations near the deconfined quantum critical point. In addition to describing significant new research results, this thesis also provides the non-expert with a clear understanding of the nature and importance of computational physics and its role in condensed matter physics as well as the nature of phase transitions, both classical and quantum. It also contains an elegant and detailed but accessible summary of the methods used in the thesis—exact diagonalization, Monte Carlo, quantum Monte Carlo and the stochastic series expansion—that will serve as a valuable pedagogical introduction to students beginning in this field.

Book Characterizing Ground States of Low dimensional Quantum Magnets

Download or read book Characterizing Ground States of Low dimensional Quantum Magnets written by Hyejin Ju and published by . This book was released on 2013 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of frustration in quantum magnetism has been the focus of extensive research in the past couple of decades. The class of materials in this category is typically strongly correlated, due to strong electron-electron repulsion. In one- and two-dimensions, quantum fluctuations dominate these systems, and often, semi-classical approximations become an oversimplification. This thesis is concerned with exploring exotic physics that can emerge in low-dimensional quantum magnets. First, we use a T = 0 projected Monte Carlo algorithm in the valence bond basis to study the entanglement scaling of two-dimensional (2d) gapless systems. In particular, we focus on the resonating-valence-bond wavefunction as well as the gapless Goldstone mode in the Heisenberg model on the square lattice. We find that, in addition to the area law, there is a subleading, shape-dependent piece to the entanglement entropy, which is reminiscent of one dimensional (1d) gapless systems. We then explore the Heisenberg model under an applied magnetic field on the quasi-1d problem of a three-leg triangular spin tube (TST), using extensive density-matrix-renormalization group calculations coupled with analytical arguments to describe the results. We find that the physics describing this model differs from some of the well-known results on the two dimensional lattice, especially near low magnetic fields and at 1/3 magnetization. Finally, further research and possibilities in numerical techniques are discussed.

Book Fundamentals of Low Dimensional Magnets

Download or read book Fundamentals of Low Dimensional Magnets written by Ram K. Gupta and published by CRC Press. This book was released on 2022-08-29 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.

Book High Magnetic Field Science and Its Application in the United States

Download or read book High Magnetic Field Science and Its Application in the United States written by National Research Council and published by National Academies Press. This book was released on 2013-12-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

Book Opportunities in High Magnetic Field Science

Download or read book Opportunities in High Magnetic Field Science written by National Research Council and published by National Academies Press. This book was released on 2005-07-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-field magnetsâ€"those that operate at the limits of the mechanical and/or electromagnetic properties of their structural materialsâ€"are used as research tools in a variety of scientific disciplines. The study of high magnetic fields themselves is also important in many areas such as astrophysics. Because of their importance in scientific research and the possibility of new breakthroughs, the National Science Foundation asked the National Research Council to assess the current state of and future prospects for high-field science and technology in the United States. This report presents the results of that assessment. It focuses on scientific and technological challenges and opportunities, and not on specific program activities. The report provides findings and recommendations about important research directions, the relative strength of U.S. efforts compared to other countries, and ways in which the program can operate more effectively.

Book Magnetic Heat Transport in Low dimensional Quantum Magnets

Download or read book Magnetic Heat Transport in Low dimensional Quantum Magnets written by Marian Otter and published by . This book was released on 2012 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magnetic Exchange Disorder in Low dimensional Quantum Magnets

Download or read book Magnetic Exchange Disorder in Low dimensional Quantum Magnets written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional quantum magnetism is currently of great interest due to the fact that reduced dimensionality can support strong quantum fluctuations, which may lead to unusual phenomena and quantum-critical behavior. The effect of random exchange strengths in two-dimensional (2D) antiferromagnets is still not fully understood despite much effort. This project aims to rectify this by investigating the high-field properties of the 2D coordination polymer (QuinH)2Cu(ClxBr1-x)4.2H2O. The exchange pathway is through Cu-Halide-Cu bonds, and by randomizing the proportion of chlorine and bromine atoms in the unit cell, disorder can be introduced into the system.

Book High Magnetic Fields

    Book Details:
  • Author : Claude Berthier
  • Publisher :
  • Release : 2014-01-15
  • ISBN : 9783662143131
  • Pages : 504 pages

Download or read book High Magnetic Fields written by Claude Berthier and published by . This book was released on 2014-01-15 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Magnetic Fields

    Book Details:
  • Author : Claude Berthier
  • Publisher : Springer Science & Business Media
  • Release : 2001
  • ISBN : 354043979X
  • Pages : 503 pages

Download or read book High Magnetic Fields written by Claude Berthier and published by Springer Science & Business Media. This book was released on 2001 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum Hall effect, low-dimensional systems, vortices and superconductivity, high-resolution NMR and EPR spectroscopy - all these and many other landmark contributions of high-magnetic-field physics to solid state science, analytical chemistry and structural biology are presented in this book. Each chapter describes the key concepts and future prospects in the corresponding field. The text can be read at different levels: researchers will find depth and insight, while students will come to understand the basic concepts. This book, written by leading scientists, will serve as a reference work on high-magnetic-field science for many years to come.

Book Quantum Magnetism

    Book Details:
  • Author : Ulrich Schollwöck
  • Publisher : Springer
  • Release : 2008-05-14
  • ISBN : 3540400664
  • Pages : 488 pages

Download or read book Quantum Magnetism written by Ulrich Schollwöck and published by Springer. This book was released on 2008-05-14 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.

Book Statics and Dynamics of Weakly Coupled Antiferromagnetic Spin 1 2 Ladders in a Magnetic Field

Download or read book Statics and Dynamics of Weakly Coupled Antiferromagnetic Spin 1 2 Ladders in a Magnetic Field written by Pierre Bouillot and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis shows how a combination of analytic and numerical techniques, such as a time dependent and finite temperature Density Matrix Renormalization Group (DMRG) technique, can be used to obtain the physical properties of low dimensional quantum magnets with an unprecedented level of accuracy. A comparison between the theory and experiment then enables these systems to be used as quantum simulators; for example, to test various generic properties of low dimensional systems such as Luttinger liquid physics, the paradigm of one dimensional interacting quantum systems. Application of these techniques to a material made of weakly coupled ladders (BPCB) allowed the first quantitative test of Luttinger liquids. In addition, other physical quantities (magnetization, specific heat etc.), and more remarkably the spins-spin correlations – directly measurable in neutron scattering experiments – were in excellent agreement with the observed quantities. We thus now have tools to quantitatiively assess the dynamics for this class of quantum systems.

Book Low Dimensional Magnetism

Download or read book Low Dimensional Magnetism written by Jonas Alexander Kjall and published by . This book was released on 2012 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetism is a subject that has fascinated mankind for countless generations. With the development of quantum mechanics around a century ago a fundamental understanding of many of the underlying causes of magnetism were obtained. However, the long range interaction combined with the complex systems magnetism appears in makes it very hard to investigate it. In our days this research area is more active than ever, mainly due to future demand of the electronic industry for components engineered down to the atomic level. Quantum effects gets more important at short scales, especially in lower dimensional materials like sheets and wires. The rapidly increasing amount of computational power available makes the numerical techniques a more important part of the research effort. Many of these are especially well suited to analyze lower dimensional quantum problems. Three of the most important techniques, (classical) Monte Carlo, Exact Diagonalization (ED) and matrix product states (MPS) based techniques, like density renormalization group (DMRG) and time evolving block decimation (TEBD) will be described in some detail and put to use later in this dissertation. With the rapid development of experimental techniques for ultracold gases in optical traps a new approach to investigate magnetic properties that are hard achieve or control in the solid state has emerged. We first study the ground-state phase diagram of a spin-1 condensate trapped in an optical trap when the magnetic dipole interaction between the atoms is taken into account along with confinement and spin precession. The boundaries between the regions of ferromagnetic and polar phases move as the dipole strength is varied and the ferromagnetic phases can be modulated. The magnetization of the ferromagnetic phase perpendicular to the field becomes modulated as a helix winding around the magnetic field direction, with a wavelength inversely proportional to the dipole strength. This modulation should be observable for current experimental parameters in 87Rb. Hence the much-sought supersolid state, with broken continuous translation invariance in one direction and broken global U(1) invariance, occurs generically as a metastable state in this system as a result of dipole interaction. The ferromagnetic state parallel to the applied magnetic field becomes striped in a finite system at strong dipolar coupling. The development of artificial gauge fields, that can mimic magnetic fields, in ultracold gases suggests that atomic realization of fractional quantum Hall physics will become experimentally practical in the near future. While it is known that bosons on lattices can support quantum Hall states, the universal edge excitations that provide the most likely experimental probe of the topological order have not been obtained. We find that the edge excitations of an interacting boson lattice model are surprisingly sensitive to interedge hybridization and edge-bulk mixing for some confining potentials. With properly chosen potentials and fluxes, the edge spectrum is surprisingly clear even for small systems with strong lattice effects such as bandwidth. Various fractional quantum Hall phases for bosons can be obtained, and the phases [nu]=1/2 and [nu]=2/3 have the edge spectra predicted by the chiral Luttinger liquid theory. Also, some of the traditional experimental techniques for detecting magnetic order and dynamics in solid state materials, like neutron scattering has had somewhat of a renaissance lately. In a recent experiment on CoNb2O6, Coldea et. al. found for the first time experimental evidence of the exceptional Lie algebra E8. The emergence of this symmetry was theoretically predicted long ago for the transverse quantum Ising chain in the presence of a weak longitudinal field. We consider an accurate microscopic model of CoNb2O6 incorporating additional couplings and calculate numerically the dynamical structure function using a recently developed matrix-product-state method. The excitation spectra show bound states characteristic of the weakly broken $textrm{E}_8$ symmetry. We compare the observed bound state signatures in this model to those found in the transverse Ising chain in a longitudinal field and to experimental data. Finally, we investigate the ground state phase diagram of a related quantum spin chain, the S=2 XXZ chain with single-ion anisotropy. The interest in this system comes mainly from connecting the highly quantum mechanical spin-1 phase diagram with the classical S=∞ phase diagram. While most of these questions where believed to have been satisfactorily answered mainly with DMRG, some recent studies have questioned some of the conclusions. We use several of the recent advances within DMRG and perform a detailed analysis of the whole phase diagram. We extend the phase diagram by considering different types of single ion anisotropies which help us to answer two important questions: First we show that one can adiabatically move from the isotropic Heisenberg point to the so-called large-D phase with a continuous change of the Hamiltonian. Second, we can tune the model into a predicted intermediate phase which is equivalent to the topologically non-trivial spin-1 Haldane phase. Furthermore, we study the spin-3 XXZ chain to help explaining the development of the classical phase diagram.

Book High Magnetic Fields

    Book Details:
  • Author : Claude Berthier
  • Publisher : Springer
  • Release : 2008-01-11
  • ISBN : 354045649X
  • Pages : 503 pages

Download or read book High Magnetic Fields written by Claude Berthier and published by Springer. This book was released on 2008-01-11 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is addressed to all scientists interested in the use of high magnetic ?elds and in the use of high-?eld facilities around the world. In particular it will help young scientists and newcomers to the topic to gain a better understanding in areas such as condensed matter physics, in which the magnetic ?eld plays a key role either as a parameter controlling the Hamiltonian, or as an experimental tool to probe the underlying mechanism. This concerns mostly strongly correlated and (or) low dimensional systems. Rather than covering all these subjects in detail, the philosophy here is to give essential physical concepts in some of the most active ?elds, which have been quickly growing in the last ten to twenty years. Besides its role as a physical parameter in condensed matter physics, a large magnetic ?eld is essential to Electron Paramagentic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopies. The state of art of high resolution NMRin liquids and solids and high frequency EPRapplied to ?elds like chemistry and biology are also reviewed in this volume. The ?rst series of chapters is devoted to the integer and the Fractional Qu- tum Hall E?ects (FQHE) in two-dimensional electron systems. C. Glattli brushes an historical background and a comprehensive review of transport phenomena in these systems, including recent developments on the mesoscopic electronic transport at the edges of quantum Hall samples, chiral Luttinger liquids and fractional excitations. R.

Book Molecular Magnets

    Book Details:
  • Author : Maria Bałanda
  • Publisher : MDPI
  • Release : 2019-03-19
  • ISBN : 3038977101
  • Pages : 166 pages

Download or read book Molecular Magnets written by Maria Bałanda and published by MDPI. This book was released on 2019-03-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.

Book Low Dimensional Magnetism

Download or read book Low Dimensional Magnetism written by A.N. Vasiliev and published by CRC Press. This book was released on 2019-07-16 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional magnetism physics involves the search for new magnetic compounds and improving their characteristics to meet the needs of innovative technologies. A comprehensive overview of key materials, their formulation data and characteristics are detailed by the author. Key selling features: Explores dominant mechanisms of magnetic interaction to determine the parameters of exchange interactions in new magnetic materials. Describes how magnetism and superconductivity not only compete, but also "help" each other. Details characteristics of key materials in the magnetic subsystem. Results of several internationally renowned research groups are included and cited. Suitable for a wide range of readers in physics, materials science, and chemistry interested in the problems of the structure of matter.

Book Handbook of Spintronics

Download or read book Handbook of Spintronics written by Yongbing Xu and published by Springer. This book was released on 2015-10-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.

Book Magnetic Excitations and Fluctuations

Download or read book Magnetic Excitations and Fluctuations written by S.W. Lovesey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international workshop on Elementary Excitations and Fluctuations in Magnetic Systems was held in San Miniato, Italy, for five days beginning 28 May, 1984. The workshop comprised eight working sessions that contai ned a total of 43 invited talks, and 58 scientists were in attendance from 14 countries. Our aim was to review some topics of current interest in the statistical physics of magnetic materials and models, with an emphasis on theoretical studies and confrontations between these and experimental and computer simulation data. book contains summary papers written by the invited speakers, and This the material will be of immediate interest to graduate students and resear chers engaged in studies of magnetic properties. There is, perhaps, no ef fective way to record and convey the benefit of the numerous discussions between the participants that are a significant integral feature of a work shop. The magnificent .venue of the workshop, I Cappuccini, was made availa ble to us by the. Cassa di Risparmio San Miniato. Financial support for the workshop was received from Consiglio Nazionale delle Ricerche, Universita degli Studi di Firenze and the Gruppo Nazionale Struttura, della Materia. Our administrative load and the burden of preparing the proceedings for publication was made light by the talents of Carla Pardini (CNR, Florence), and Caroline Monypenny and Jane Warren (Rutherford Appleton Laboratory). Fina 11y, we wish to thank all the participants for their attendance and individual contributions to the success of the workshop.