EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book 3D Stacked Chips

Download or read book 3D Stacked Chips written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2016-05-11 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size. The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.

Book Surface Passivation of Industrial Crystalline Silicon Solar Cells

Download or read book Surface Passivation of Industrial Crystalline Silicon Solar Cells written by Joachim John and published by Institution of Engineering and Technology. This book was released on 2018-11-15 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface passivation of silicon solar cells describes a technology for preventing electrons and holes to recombine prematurely with one another on the wafer surface. It increases the cell's energy conversion efficiencies and thus reduces the cost per kWh generated by a PV system.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book High Efficiency Silicon Solar Cells

Download or read book High Efficiency Silicon Solar Cells written by Martin A. Green and published by Trans Tech Publications Ltd. This book was released on 1987-01-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The early chapters comprehensively review the optical and transport properties of silicon. Light trapping is described in detail. Limits on the efficiency of silicon cells are discussed as well as material requirements necessary to approach these limits. The status of current approaches to passifying surfaces, contacts and bulk regions is reviewed. The final section of the book describes the most practical approaches to the fabrication of high-efficiency cells capable of meeting the efficiency targets for both concentrated and non-concentrated sunlight, including a discussion of design and processing approaches for non-crystalline silicon.

Book The Emergence of Agrivoltaics

Download or read book The Emergence of Agrivoltaics written by Dimitris A. Chalkias and published by Springer Nature. This book was released on 2024-01-01 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assists in the adoption of the sustainable cross-sectoral nexus approach of agrivoltaics, which can provide a quite significant untapped potential for the sustainable development of humanity. Increasing demand for water, energy and food, due to population growth and urbanization, is aggravated by unprecedented extreme weather and climatic conditions. This situation is likely to undermine the sustainable and peaceful development of humanity. Today, more than ever, there is an imperative need to support the identification and development of practical solutions, where the use of a nexus approach can lead to improved outcomes in the integrated management of water–energy–food–ecosystem (WEFE) resources. This book disseminates the current knowledge of the modern approach of agrivoltaics, providing a comprehensive state of the art on the field, discussing the current status, the challenges and the future perspectives for their further development. This new currently in-depth unexplored topic will be covered thoroughly by the present book, which will attract the readership of both the scientific and industrial research communities, even of people who are dealing with cultivations, promoting the development in the field, from conceptual designs to practical realizations.

Book Physics of Solar Cells

    Book Details:
  • Author : Peter Würfel
  • Publisher : John Wiley & Sons
  • Release : 2008-07-11
  • ISBN : 3527618554
  • Pages : 198 pages

Download or read book Physics of Solar Cells written by Peter Würfel and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Peter Würfel describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. Based on the highly successful German version, but thoroughly revised and updated, this edition contains the latest knowledge on the mechanisms of solar energy conversion. Requiring no more than standard physics knowledge, it enables readers to understand the factors driving conversion efficiency and to apply this knowledge to their own solar cell development.

Book Solar Cells and Modules

    Book Details:
  • Author : Arvind Shah
  • Publisher : Springer Nature
  • Release : 2020-07-16
  • ISBN : 3030464873
  • Pages : 357 pages

Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Nanomaterials for Sustainable Energy

Download or read book Nanomaterials for Sustainable Energy written by Quan Li and published by Springer. This book was released on 2016-05-12 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

Book Physics of Solar Cells

    Book Details:
  • Author : Peter Würfel
  • Publisher : John Wiley & Sons
  • Release : 2016-06-13
  • ISBN : 352741309X
  • Pages : 288 pages

Download or read book Physics of Solar Cells written by Peter Würfel and published by John Wiley & Sons. This book was released on 2016-06-13 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.

Book Development of Solar Cells

Download or read book Development of Solar Cells written by Juganta K. Roy and published by Springer Nature. This book was released on 2021-05-12 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive overview of the fundamental concept, design, working protocols, and diverse photo-chemicals aspects of different solar cell systems with promising prospects, using computational and experimental techniques. It presents and demonstrates the art of designing and developing various solar cell systems through practical examples. Compared to most existing books in the market, which usually analyze existing solar cell approaches this volume provides a more comprehensive view on the field. Thus, it offers an in-depth discussion of the basic concepts of solar cell design and their development, leading to higher power conversion efficiencies. The book will appeal to readers who are interested in both fundamental and application-oriented research while it will also be an excellent tool for graduates, researchers, and professionals working in the field of photovoltaics and solar cell systems.

Book Photovoltaic Solar Energy

Download or read book Photovoltaic Solar Energy written by Angèle Reinders and published by John Wiley & Sons. This book was released on 2017-01-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.

Book Electrode Materials for Energy Storage and Conversion

Download or read book Electrode Materials for Energy Storage and Conversion written by Mesfin A. Kebede and published by CRC Press. This book was released on 2021-11-17 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

Book Atomic Layer Deposition in Energy Conversion Applications

Download or read book Atomic Layer Deposition in Energy Conversion Applications written by Julien Bachmann and published by John Wiley & Sons. This book was released on 2017-03-15 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining the two topics for the first time, this book begins with an introduction to the recent challenges in energy conversion devices from a materials preparation perspective and how they can be overcome by using atomic layer deposition (ALD). By bridging these subjects it helps ALD specialists to understand the requirements within the energy conversion field, and researchers in energy conversion to become acquainted with the opportunities offered by ALD. With its main focus on applications of ALD for photovoltaics, electrochemical energy storage, and photo- and electrochemical devices, this is important reading for materials scientists, surface chemists, electrochemists, electrotechnicians, physicists, and those working in the semiconductor industry.

Book Fundamentals Of Solar Cells

Download or read book Fundamentals Of Solar Cells written by Alan Fahrenbruch and published by Elsevier. This book was released on 2012-12-02 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion provides an introduction to the fundamental physical principles of solar cells. It aims to promote the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to energy supply. The book begins with a review of basic concepts such as the source of energy, the role of photovoltaic conversion, the development of photovoltaic cells, and sequence of phenomena involved in solar power generation. This is followed by separate chapters on each of the processes that take place in solar cell. These include solar input; properties of semiconductors; recombination and the flow of photogenerated carriers; charge separation and the characteristics of junction barriers; and calculation of solar efficiency. Subsequent chapters deal with the operation of specific solar cell devices such as a single-crystal homojunction (Si); a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs); and a polycrystalline, thin-film cell (CuxS/CdS). This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells.

Book Silicon Based Thin Film Solar Cells

Download or read book Silicon Based Thin Film Solar Cells written by Roberto Murri and published by Bentham Science Publishers. This book was released on 2013-03-20 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Based Thin Film Solar Cells explains concepts related to technologies for silicon (Si) based photovoltaic applications. Topics in this book focus on ‘new concept’ solar cells. These kinds of cells can make photovoltaic power production an economically viable option in comparison to the bulk crystalline semiconductor technology industry. A transition from bulk crystalline Si solar cells toward thin-film technologies reduces usage of active material and introduces new concepts based on nanotechnologies. Despite its importance, the scientific development and understanding of new solar cells is not very advanced, and educational resources for specialized engineers and scientists are required. This textbook presents the fundamental scientific aspects of Si thin films growth technology, together with a clear understanding of the properties of the material and how this is employed in new generation photovoltaic solar cells. The textbook is a valuable resource for graduate students working on their theses, young researchers and all people approaching problems and fundamental aspects of advanced photovoltaic conversion.