Download or read book Linear Algebra and Analytic Geometry for Physical Sciences written by Giovanni Landi and published by Springer. This book was released on 2018-05-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
Download or read book A Vector Space Approach to Geometry written by Melvin Hausner and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Download or read book Linear Algebra and Geometry written by Igor R. Shafarevich and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Download or read book Linear Algebra written by Georgi? Evgen?evich Shilov and published by Courier Corporation. This book was released on 1977-06-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Download or read book Algebraic and Analytic Geometry written by Amnon Neeman and published by Cambridge University Press. This book was released on 2007-09-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Download or read book Linear Algebra Via Exterior Products written by Sergei Winitzki and published by Sergei Winitzki. This book was released on 2009-07-30 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
Download or read book Introduction to Non linear Algebra written by Valeri? Valer?evich Dolotin and published by World Scientific. This book was released on 2007 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Literaturverz. S. 267 - 269
Download or read book A Concise Introduction to Linear Algebra written by Géza Schay and published by Springer Science & Business Media. This book was released on 2012-03-30 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.
Download or read book A First Course in Calculus written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-09-17 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
Download or read book Principles of Mathematics written by Carl Barnett Allendoerfer and published by CUP Archive. This book was released on 1953 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basic Mathematics written by Serge Lang and published by . This book was released on 1988-01 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Algebra for Computational Sciences and Engineering written by Ferrante Neri and published by Springer. This book was released on 2019-07-26 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the main concepts of linear algebra from the viewpoint of applied scientists such as computer scientists and engineers, without compromising on mathematical rigor. Based on the idea that computational scientists and engineers need, in both research and professional life, an understanding of theoretical concepts of mathematics in order to be able to propose research advances and innovative solutions, every concept is thoroughly introduced and is accompanied by its informal interpretation. Furthermore, most of the theorems included are first rigorously proved and then shown in practice by a numerical example. When appropriate, topics are presented also by means of pseudocodes, thus highlighting the computer implementation of algebraic theory. It is structured to be accessible to everybody, from students of pure mathematics who are approaching algebra for the first time to researchers and graduate students in applied sciences who need a theoretical manual of algebra to successfully perform their research. Most importantly, this book is designed to be ideal for both theoretical and practical minds and to offer to both alternative and complementary perspectives to study and understand linear algebra.
Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Download or read book The Four Pillars of Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2005-08-09 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Download or read book Linear Algebra and Geometry written by P. K. Suetin and published by CRC Press. This book was released on 1997-10-01 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Download or read book The Geometry of Physics written by Theodore Frankel and published by Cambridge University Press. This book was released on 2011-11-03 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.