EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lattice Based Space time Block Codes for MIMO System

Download or read book Lattice Based Space time Block Codes for MIMO System written by Huiyong Liao and published by . This book was released on 2007 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Chapter 5, we show that the diversity products of the full transmit diversity space time block code(STBC) proposed recently by Lu-Kumar (we call them Lu-Kumar's codes) with QAM constellations are lower bounded by 4.

Book Space time Codes and MIMO Systems

Download or read book Space time Codes and MIMO Systems written by Mohinder Jankiraman and published by Artech House. This book was released on 2004 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation "This resource takes professionals step by step from the basics of MIMO through various coding techniques, to critical topics such as multiplexing and packet transmission. Practical examples are emphasized and mathematics is kept to a minimum, so readers can quickly and thoroughly understand the essentials of MIMO. The book takes a systems view of MIMO technology that helps professionals analyze the benefits and drawbacks of any MIMO system."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.

Book Space Time Coding

Download or read book Space Time Coding written by Hamid Jafarkhani and published by Cambridge University Press. This book was released on 2005-09-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory. Starting with background material on wireless communications and the capacity of MIMO channels, the book then reviews design criteria for space-time codes. A detailed treatment of the theory behind space-time block codes then leads on to an in-depth discussion of space-time trellis codes. The book continues with discussion of differential space-time modulation, BLAST and some other space-time processing methods and the final chapter addresses additional topics in space-time coding. The theory and practice sections can be used independently of each other. Written by one of the inventors of space-time block coding, this book is ideal for a graduate student familiar with the basics of digital communications, and for engineers implementing the theory in real systems.

Book Coding for MIMO Communication Systems

Download or read book Coding for MIMO Communication Systems written by Tolga M. Duman and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding for MIMO Communication Systems is a comprehensive introduction and overview to the various emerging coding techniques developed for MIMO communication systems. The basics of wireless communications and fundamental issues of MIMO channel capacity are introduced and the space-time block and trellis coding techniques are covered in detail. Other signaling schemes for MIMO channels are also considered, including spatial multiplexing, concatenated coding and iterative decoding for MIMO systems, and space-time coding for non-coherent MIMO channels. Practical issues including channel correlation, channel estimation and antenna selection are also explored, with problems at the end of each chapter to clarify many important topics. A comprehensive book on coding for MIMO techniques covering main strategies Theories and practical issues on MIMO communications are examined in detail Easy to follow and accessible for both beginners and experienced practitioners in the field References at the end of each chapter for further reading Can be used with ease as a research book, or a textbook on a graduate or advanced undergraduate level course This book is aimed at advanced undergraduate and postgraduate students, researchers and practitioners in industry, as well as individuals working for government, military, science and technology institutions who would like to learn more about coding for MIMO communication systems.

Book Quasi orthogonal Space time Block Code

Download or read book Quasi orthogonal Space time Block Code written by Chau Yuen and published by Imperial College Press. This book was released on 2007 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quasi-Orthogonal Space-Time Block Code presents an up-to-date, comprehensive and in-depth discussion of an important emerging class of space-time codes, called the Quasi-Orthogonal STBC (QO-STBC). Used in Multiple-Input Multiple-Output (MIMO) communication systems, they provide transmit diversity with higher code rates than the well-known orthogonal STBC (O-STBC), yet at lower decoding complexity than non-orthogonal STBC. This book will help readers gain a broad understanding of the fundamental principles as well as the state-of-the-art work in QO-STBC, thus enabling them to appreciate the roles of QO-STBC in future broadband wireless systems and to inspire further research. Sample Chapter(s). Foreword (151 KB). Chapter 1: Introduction of MIMO Channel and Space-Time Block Code (703 KB). Contents: Introduction of MIMO Channel and Space-Time Block Code; Orthogonal and Quasi- Orthogonal Space-Time Block Code; Insights of QO-STBC; Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity; Differential QO-STBC; Rate, Complexity and Diversity Trade-Off in QO-STBC; Other Developments and Applications of QO-STBC. Readership: Academics and graduate-level research students and developers of next-generation wireless systems.

Book Space time Encoding and Decoding for MIMO Systems and Cooperative Communication Systems

Download or read book Space time Encoding and Decoding for MIMO Systems and Cooperative Communication Systems written by Yabo Li and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal space diversity, which achieves reliable communication in fasting Rayleigh fading channel by creating redundancy in signal space, is a power- and bandwidth-efficient diversity technique. However, the complexity of the optimal receiver grows exponentially with the diversity order we designed to achieve. In this work, we concatenate the signal space diversity scheme with a outer convolutional code at the transmitter, at the receiver we use iterative demodulation and decoding. By utilizing the soft output from the outer soft-input soft-output (SISO) decoder, we can do soft interference cancellation. We proposed two kinds of Gaussian approximations to calculate the soft output of the demodulator, one is the vector Gaussian approximation, the other is the scalar Gaussian approximation. The complexity of the vector Gaussian approximation grows cubically with the designed diversity order, while the complexity of the scalar Gaussian approximation grows linear with the designed diversity order. Both of these two method can exploit the signal space diversity very well. We also applied the two Gaussian approximation methods to do iterative demodulation and decoding for the concatenation of convolutional code and lattice-based space-time block codes. Their performances are compared with the linear MMSE method. Also, we analyzed the behavior of the vector Gaussian approximation method by using EXIT chart analysis. When the convolutional code is concatenated with a modulator and a bit-interleaver is used in between, the mapping from bit sequences to the constellations affects the performance of the receiver very much. By a carefully designed mapping, we can achieve performance gain without adding additional complexity to the receiver or consuming any other resources. In our work, we considered the mapping from bit sequences to the space-time matrices. The mapping criterions are derived for the demodulator with perfect a priori and no a priori information. Optimized mappings are searched for some unitary space-time modulations schemes and non-coherent space-time modulation schemes. Spatial diversity is more and more widely used today. However, to have spatial diversity, multiple antennas should be equipped at the transmitter and/or the receiver. This would increase the cost and the size of the transceiver in the mobile station. (Abstract shortened by UMI.).

Book Lattice Based Precoding And Decoding in MIMO Fading Systems

Download or read book Lattice Based Precoding And Decoding in MIMO Fading Systems written by Mahmoud Taherzadeh and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, different aspects of lattice-based precoding and decoding for the transmission of digital and analog data over MIMO fading channels are investigated: 1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopting the lattice reduction in communication over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate transmission, and obtain analytic results for the asymptotic behavior of the symbol-error-rate for the lattice-reduction-aided precoding and the perturbation technique. Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). 2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point systems: Diversity order and diversity-multiplexing tradeoff are two important measures for the performance of communication systems over MIMO fading channels. For the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, it is proved that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity in V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice decoding for general MIMO fading systems is investigated. It is shown that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice space-time codes which have the non-vanishing determinant property can not achieve the optimal diversity-multiplexing tradeoff. 3) Lattice-based analog transmission over MIMO fading channels: The problem of finding a delay-limited schemes for sending an analog source over MIMO fading channels is investigated in this part. First, the problem of robust joint source-channel coding over an additive white Gaussian noise channel is investigated. A new scheme is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR) curve (unlike the previous known coding schemes). Then, this idea is extended to MIMO channels to construct lattice-based codes for joint source-channel coding over MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic performance of MIMO joint source-channel coding schemes is characterized, and a concept called diversity-fidelity tradeoff is introduced in this thesis.

Book

    Book Details:
  • Author :
  • Publisher : IOS Press
  • Release :
  • ISBN :
  • Pages : 6097 pages

Download or read book written by and published by IOS Press. This book was released on with total page 6097 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MIMO Processing for 4G and Beyond

Download or read book MIMO Processing for 4G and Beyond written by Mario Marques da Silva and published by CRC Press. This book was released on 2016-04-19 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: MIMO Processing for 4G and Beyond: Fundamentals and Evolution offers a cutting-edge look at multiple-input multiple-output (MIMO) signal processing, namely its detection (in both time and frequency domains) and precoding. It examines its integration with OFDM, UWB, and CDMA, along with the impact of these combinations at the system level. Massive M

Book Quasi Orthogonal Space Time Block Codes for MIMO Wireless Communication Systems

Download or read book Quasi Orthogonal Space Time Block Codes for MIMO Wireless Communication Systems written by Bharath Sethumadhavan and published by . This book was released on 2006 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Distributed Space Time Block Code in Asynchronous Cooperative Networks

Download or read book Distributed Space Time Block Code in Asynchronous Cooperative Networks written by Mohammed Taha El Astal and published by LAP Lambert Academic Publishing. This book was released on 2011-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space- Time Block Coding (STBC) are used to improve the transmission reliably and spectral efficiency of MIMO systems. The cooperative communication techniques can avoid the difficulties of implementing actual antennas array by converting the single-input single-output (SISO) system into a virtual multiple-input multiple-output (MIMO) system. When STBC applied to cooperative diversity the system termed as Distributed Space Time Block Code (D-STBC). Most of the existing research assumes perfect synchronization among cooperative users in D-STBC. Unfortunately, perfect synchronization is almost impossible to be achieved. Therefore, most of the designed space-time codes are no longer valid. There are different research efforts to overcome this problem; most of which has high decoding complexity. In this research, two low decoding complexity schemes for imperfect synchronized D-STBC have been proposed. The first scheme is based on the principle of parallel interference cancellation (PIC), whereas the other is based on successive interference cancellation (SIC). These approaches have been proved to be a very effective in suppressing the impact of imperfect synchronization.

Book Space Time Processing for MIMO Communications

Download or read book Space Time Processing for MIMO Communications written by Alex Gershman and published by John Wiley & Sons. This book was released on 2005-08-05 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Exciting theoretical advances have been complemented by rapid transition of research results to industry products and services, thus creating a vibrant new area. Space-time processing is a broad area, owing in part to the underlying convergence of information theory, communications and signal processing research that brought it to fruition. This book presents a balanced and timely introduction to space-time processing for MIMO communications, including highlights of emerging trends, such as spatial multiplexing and joint transceiver optimization. Includes detailed coverage of wireless channel sounding, modelling, characterization and model validation. Provides state-of-the-art research results on space-time coding, including comprehensive tutorial coverage of orthogonal space-time block codes. Discusses important recent developments in spatial multiplexing, transmit beam-forming, pre-coding and joint transceiver design for the multi-user MIMO downlink using full or partial CSI. Illustrates all theory with numerous examples gleaned from cutting-edge research from around the globe. This valuable resource will appeal to engineers, developers and consultants involved in the design and implementation of space-time processing for MIMO communications. Its accessible format, amply illustrated with real world case studies, contains relevant, detailed advice for postgraduate students and researchers specializing in this field.

Book Multilayered Space time Coding for MIMO Systems

Download or read book Multilayered Space time Coding for MIMO Systems written by May Gomaa and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance of MIMO Systems Using Space Time Block Codes  STBC

Download or read book Performance of MIMO Systems Using Space Time Block Codes STBC written by Rafidah Ismail and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Space Time Block Codes with MATLAB for MIMO Wireless Communications

Download or read book Space Time Block Codes with MATLAB for MIMO Wireless Communications written by Yichuang Sun and published by Wiley. This book was released on 2015-08-17 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of MIMO Wireless Communications

Download or read book Fundamentals of MIMO Wireless Communications written by Rakhesh Singh Kshetrimayum and published by Cambridge University Press. This book was released on 2017-04-17 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Provides a solid understanding of the essential concepts of MIMO wireless communications"--

Book Space time Code Designs and Fast Decoding for MIMO and Cooperative Communication Systems

Download or read book Space time Code Designs and Fast Decoding for MIMO and Cooperative Communication Systems written by Yue Shang and published by ProQuest. This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Space-time coding is an attractive technique to exploit the transmit diversity gain provided by a multiple-input multiple-output (MIMO) wireless system. Regarding a space-time code design, some important concerns are high rates, full diversity, large coding gain (diversity products) and low decoding complexity. However, a tradeoff exists among these goals and constructing a good code that optimizes some or all of these goals is a very practical and interesting problem that has attracted a lot of attention in the past 10 years. Furthermore, other design issues may also matter and should be taken into account when one considers certain special scenarios to which the space-time coding technique is applied. In this dissertation, we study both the code design at the transmitter side and the fast decoding algorithm at the receiver side for space-time coding. The first topic attempts to achieve both low decoding overhead and maximum (full) diversity for space-time block codes (STBC). By deploying a linear detector at the receiver, we can efficiently reduce the decoding complexity for an STBC and always obtain soft outputs that are desired when the STBC is concatenated with a channel code as in a real system. In this dissertation, we propose a design criterion for STBC to achieve full diversity with a zero-forcing (ZF) or minimum mean-square error (MMSE) receiver. Two families of STBC, orthogonal STBC (OSTBC) and Toeplitz codes, which are known to have full diversity with ZF or MMSE receiver, indeed meet this criterion, as one may expect. We also show that the symbol rates of STBC under this criterion are upper bounded by 1. Subsequently, we propose a novel family of STBC that satisfy the criterion and thus achieve full diversity with ZF or MMSE receiver. Our newly proposed STBC are constructed by overlapping the 2 x 2 Alamouti code and hence are named overlapped Alamouti codes. The new codes are close to orthogonal and have asymptotically optimal symbol rates. Simulation results show that overlapped Alamouti codes significantly outperform Toeplitz codes for any number of transmit antennas and also outperform OSTBC when the number of transmit antennas is above 4. The second topic concerns the design of space-time trellis codes (STTC) for their applications in cooperative communication systems, where transmission among different relay nodes that cooperate with each other is essentially asynchronous. A family of STTC that can achieve full cooperative diversity order regardless of the node transmission delays has been proposed and it was shown that the construction of this STTC family can be reduced to the design of binary matrices that can keep full row rank no matter how their rows are shifted. We call such matrices as shift-full-rank (SFR) matrices. We propose a systematic method to construct all the SFR matrices and, in particular, the shortest (square) SFR (SSFR) matrices that are attractive as the associated STTC require the fewest memories and hence the lowest decoding complexity. By relaxing the restriction imposed on SFR matrices, we also propose two matrix variations, q -SFR and LT-SFR matrices. In an extended cooperative system model with fractional symbol delays whose maximum value is specified, the STTC generated from q -SFR and LT-SFR matrices can still achieve asynchronous full diversity. As a result, more eligible generator matrices than SFR ones become available and some better STTC in terms of coding gain may be found. Finally, the third topic is to speed up the decoding algorithm for the vertical Bell Laboratories layered space-time (V-BLAST) scheme, a full rate STBC that however does not exploit any transmit diversity gain. A fast recursive algorithm for V-BLAST with the optimal ordered successive interference cancellation (SIC) detection has been proposed and two improved algorithms for it have also been independently introduced by different authors lately. We first incorporate the existing improvements into the original fast recursive algorithm to give an algorithm that is the fastest known one for the optimal SIC detection of V-BLAST. Then, we propose a further improvement from which two new algorithms result. Relative to the fastest known one from the existing improvements, one new algorithm has a speedup of 1:3 times in both the number of multiplications and the number of additions, and the other new algorithm requires less memory storage.