Download or read book Kernel Adaptive Filtering written by Weifeng Liu and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
Download or read book Least Mean Square Adaptive Filters written by Simon Haykin and published by John Wiley & Sons. This book was released on 2003-09-08 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by the original inventor of the technology. Includes contributions by the foremost experts in the field. The only book to cover these topics together.
Download or read book Information Theoretic Learning written by Jose C. Principe and published by Springer Science & Business Media. This book was released on 2010-04-06 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.
Download or read book Adaptive Signal Processing written by Tülay Adali and published by John Wiley & Sons. This book was released on 2010-06-25 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts present the latest research results in adaptive signal processing Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. Adaptive Signal Processing presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension. Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material Contains contributions from acknowledged leaders in the field Adaptive Signal Processing is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.
Download or read book Adaptive Learning Methods for Nonlinear System Modeling written by Danilo Comminiello and published by Butterworth-Heinemann. This book was released on 2018-06-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
Download or read book Adaptive Filtering and Change Detection written by Fredrik Gustafsson and published by John Wiley & Sons. This book was released on 2000-10-03 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive filtering is a branch of digital signal processing which enables the selective enhancement of desired elements of a signal and the reduction of undesired elements. Change detection is another kind of adaptive filtering for non-stationary signals, and is the basic tool in fault detection and diagnosis. This text takes the unique approach that change detection is a natural extension of adaptive filtering, and the broad coverage encompasses both the mathematical tools needed for adaptive filtering and change detection and the applications of the technology. Real engineering applications covered include aircraft, automotive, communication systems, signal processing and automatic control problems. The unique integration of both theory and practical applications makes this book a valuable resource combining information otherwise only available in separate sources Comprehensive coverage includes many examples and case studies to illustrate the ideas and show what can be achieved Uniquely integrates applications to airborne, automotive and communications systems with the essential mathematical tools Accompanying Matlab toolbox available on the web illustrating the main ideas and enabling the reader to do simulations using all the figures and numerical examples featured This text would prove to be an essential reference for postgraduates and researchers studying digital signal processing as well as practising digital signal processing engineers.
Download or read book Adaptive Approximation Based Control written by Jay A. Farrell and published by John Wiley & Sons. This book was released on 2006-04-14 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: A highly accessible and unified approach to the design and analysis of intelligent control systems Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox. Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before. The authors provide readers with a thought-provoking framework for rigorously considering such questions as: * What properties should the function approximator have? * Are certain families of approximators superior to others? * Can the stability and the convergence of the approximator parameters be guaranteed? * Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects? * Can this approach handle significant changes in the dynamics due to such disruptions as system failure? * What types of nonlinear dynamic systems are amenable to this approach? * What are the limitations of adaptive approximation based control? Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.
Download or read book Machine Learning for Future Wireless Communications written by Fa-Long Luo and published by John Wiley & Sons. This book was released on 2020-02-10 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Download or read book Digital Signal Processing with Kernel Methods written by Jose Luis Rojo-Alvarez and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
Download or read book Theory of Affine Projection Algorithms for Adaptive Filtering written by Kazuhiko Ozeki and published by Springer. This book was released on 2015-07-22 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on theoretical aspects of the affine projection algorithm (APA) for adaptive filtering. The APA is a natural generalization of the classical, normalized least-mean-squares (NLMS) algorithm. The book first explains how the APA evolved from the NLMS algorithm, where an affine projection view is emphasized. By looking at those adaptation algorithms from such a geometrical point of view, we can find many of the important properties of the APA, e.g., the improvement of the convergence rate over the NLMS algorithm especially for correlated input signals. After the birth of the APA in the mid-1980s, similar algorithms were put forward by other researchers independently from different perspectives. This book shows that they are variants of the APA, forming a family of APAs. Then it surveys research on the convergence behavior of the APA, where statistical analyses play important roles. It also reviews developments of techniques to reduce the computational complexity of the APA, which are important for real-time processing. It covers a recent study on the kernel APA, which extends the APA so that it is applicable to identification of not only linear systems but also nonlinear systems. The last chapter gives an overview of current topics on variable parameter APAs. The book is self-contained, and is suitable for graduate students and researchers who are interested in advanced theory of adaptive filtering.
Download or read book Online Learning and Adaptive Filters written by Paulo S. R. Diniz and published by Cambridge University Press. This book was released on 2022-11-30 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover up-to-date techniques and algorithms in this concise, intuitive text, with extensive solutions for challenging learning problems.
Download or read book Adaptive Filtering Under Minimum Mean p Power Error Criterion written by Wentao Ma and published by CRC Press. This book was released on 2024-05-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive filtering still receives attention in engineering as the use of the adaptive filter provides improved performance over the use of a fixed filter under the time-varying and unknown statistics environments. This application evolved communications, signal processing, seismology, mechanical design, and control engineering. The most popular optimization criterion in adaptive filtering is the well-known minimum mean square error (MMSE) criterion, which is, however, only optimal when the signals involved are Gaussian-distributed. Therefore, many "optimal solutions" under MMSE are not optimal. As an extension of the traditional MMSE, the minimum mean p-power error (MMPE) criterion has shown superior performance in many applications of adaptive filtering. This book aims to provide a comprehensive introduction of the MMPE and related adaptive filtering algorithms, which will become an important reference for researchers and practitioners in this application area. The book is geared to senior undergraduates with a basic understanding of linear algebra and statistics, graduate students, or practitioners with experience in adaptive signal processing. Key Features: Provides a systematic description of the MMPE criterion. Many adaptive filtering algorithms under MMPE, including linear and nonlinear filters, will be introduced. Extensive illustrative examples are included to demonstrate the results.
Download or read book Computer Vision ECCV 2014 Workshops written by Lourdes Agapito and published by Springer. This book was released on 2015-03-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The four-volume set LNCS 8925, 8926, 8927, and 8928 comprises the thoroughly refereed post-workshop proceedings of the Workshops that took place in conjunction with the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 203 workshop papers were carefully reviewed and selected for inclusion in the proceedings. They where presented at workshops with the following themes: where computer vision meets art; computer vision in vehicle technology; spontaneous facial behavior analysis; consumer depth cameras for computer vision; "chalearn" looking at people: pose, recovery, action/interaction, gesture recognition; video event categorization, tagging and retrieval towards big data; computer vision with local binary pattern variants; visual object tracking challenge; computer vision + ontology applies cross-disciplinary technologies; visual perception of affordance and functional visual primitives for scene analysis; graphical models in computer vision; light fields for computer vision; computer vision for road scene understanding and autonomous driving; soft biometrics; transferring and adapting source knowledge in computer vision; surveillance and re-identification; color and photometry in computer vision; assistive computer vision and robotics; computer vision problems in plant phenotyping; and non-rigid shape analysis and deformable image alignment. Additionally, a panel discussion on video segmentation is included.
Download or read book Efficient Nonlinear Adaptive Filters written by Haiquan Zhao and published by Springer Nature. This book was released on 2023-02-10 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the design, analysis, and application of nonlinear adaptive filters with the goal of improving efficient performance (ie the convergence speed, steady-state error, and computational complexity). The authors present a nonlinear adaptive filter, which is an important part of nonlinear system and digital signal processing and can be applied to diverse fields such as communications, control power system, radar sonar, etc. The authors also present an efficient nonlinear filter model and robust adaptive filtering algorithm based on the local cost function of optimal criterion to overcome non-Gaussian noise interference. The authors show how these achievements provide new theories and methods for robust adaptive filtering of nonlinear and non-Gaussian systems. The book is written for the scientist and engineer who are not necessarily an expert in the specific nonlinear filtering field but who want to learn about the current research and application. The book is also written to accompany a graduate/PhD course in the area of nonlinear system and adaptive signal processing.
Download or read book Adaptive Filtering written by Paulo S. R. Diniz and published by Springer Nature. This book was released on 2019-11-28 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the fifth edition of this textbook, author Paulo S.R. Diniz presents updated text on the basic concepts of adaptive signal processing and adaptive filtering. He first introduces the main classes of adaptive filtering algorithms in a unified framework, using clear notations that facilitate actual implementation. Algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Examples address up-to-date problems drawn from actual applications. Several chapters are expanded and a new chapter ‘Kalman Filtering’ is included. The book provides a concise background on adaptive filtering, including the family of LMS, affine projection, RLS, set-membership algorithms and Kalman filters, as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Problems are included at the end of chapters. A MATLAB package is provided so the reader can solve new problems and test algorithms. The book also offers easy access to working algorithms for practicing engineers.
Download or read book Adaptive Blind Signal and Image Processing written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 2002-06-14 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Im Mittelpunkt dieses modernen und spezialisierten Bandes stehen adaptive Strukturen und unüberwachte Lernalgorithmen, besonders im Hinblick auf effektive Computersimulationsprogramme. Anschauliche Illustrationen und viele Beispiele sowie eine interaktive CD-ROM ergänzen den Text.
Download or read book Springer Handbook of Bio Neuro Informatics written by Nikola Kasabov and published by Springer Science & Business Media. This book was released on 2013-11-30 with total page 1239 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook of Bio-/Neuro-Informatics is the first published book in one volume that explains together the basics and the state-of-the-art of two major science disciplines in their interaction and mutual relationship, namely: information sciences, bioinformatics and neuroinformatics. Bioinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. Neuroinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. The text contains 62 chapters organized in 12 parts, 6 of them covering topics from information science and bioinformatics, and 6 cover topics from information science and neuroinformatics. Each chapter consists of three main sections: introduction to the subject area, presentation of methods and advanced and future developments. The Springer Handbook of Bio-/Neuroinformatics can be used as both a textbook and as a reference for postgraduate study and advanced research in these areas. The target audience includes students, scientists, and practitioners from the areas of information, biological and neurosciences. With Forewords by Shun-ichi Amari of the Brain Science Institute, RIKEN, Saitama and Karlheinz Meier of the University of Heidelberg, Kirchhoff-Institute of Physics and Co-Director of the Human Brain Project.