Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Download or read book An Elementary Introduction to the Theory of Probability written by Boris Vladimirovich Gnedenko and published by Courier Corporation. This book was released on 1962-01-01 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.
Download or read book Introduction to Probability Theory written by Paul G. Hoel and published by Cengage Learning. This book was released on 1971 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability spaces; Combinatorial analysis; Discrete random variables; Expectation of discrete random variables; Continuous random variables; Jointly distributed random variables; Expectations and the central limit theorem; Moment generating functions and characteristic functions; Random walks and poisson processes.
Download or read book Probability Theory written by and published by Allied Publishers. This book was released on 2013 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory
Download or read book Introduction to Probability written by John E. Freund and published by Courier Corporation. This book was released on 2012-05-11 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featured topics include permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, much more. Exercises with some solutions. Summary. 1973 edition.
Download or read book Probability Theory written by Achim Klenke and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.
Download or read book A Natural Introduction to Probability Theory written by R. Meester and published by Springer Science & Business Media. This book was released on 2008-03-16 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.
Download or read book Probability Theory written by Yakov G. Sinai and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sinai's book leads the student through the standard material for ProbabilityTheory, with stops along the way for interesting topics such as statistical mechanics, not usually included in a book for beginners. The first part of the book covers discrete random variables, using the same approach, basedon Kolmogorov's axioms for probability, used later for the general case. The text is divided into sixteen lectures, each covering a major topic. The introductory notions and classical results are included, of course: random variables, the central limit theorem, the law of large numbers, conditional probability, random walks, etc. Sinai's style is accessible and clear, with interesting examples to accompany new ideas. Besides statistical mechanics, other interesting, less common topics found in the book are: percolation, the concept of stability in the central limit theorem and the study of probability of large deviations. Little more than a standard undergraduate course in analysis is assumed of the reader. Notions from measure theory and Lebesgue integration are introduced in the second half of the text. The book is suitable for second or third year students in mathematics, physics or other natural sciences. It could also be usedby more advanced readers who want to learn the mathematics of probability theory and some of its applications in statistical physics.
Download or read book An Introduction to the Theory of Probability written by Parimal Mukhopadhyay and published by World Scientific. This book was released on 2012 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution and convergence of random variables. Difficult ideas have been explained lucidly and have been augmented with explanatory notes, examples and exercises. The basic requirement for reading this book is simply a knowledge of mathematics at graduate level. This book tries to explain the difficult ideas in the axiomatic approach to the theory of probability in a clear and comprehensible manner. It includes several unusual distributions including the power series distribution that have been covered in great detail. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging. The author is a former Professor of the Indian Statistical Institute, India.
Download or read book Introduction to Probability Statistics and Random Processes written by Hossein Pishro-Nik and published by . This book was released on 2014-08-15 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Download or read book Basic Probability Theory written by Robert B. Ash and published by Courier Corporation. This book was released on 2008-06-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Download or read book Concepts of Probability Theory written by Paul E. Pfeiffer and published by Courier Corporation. This book was released on 2013-05-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Download or read book Introduction to Probability with R written by Kenneth Baclawski and published by CRC Press. This book was released on 2008-01-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.
Download or read book An Introduction to Probability Theory written by K. Itô and published by Cambridge University Press. This book was released on 1984-09-28 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most distinguished probability theorists in the world rigorously explains the basic probabilistic concepts while fostering an intuitive understanding of random phenomena.
Download or read book An Introduction to Probability Theory and Mathematical Statistics written by V. K. Rohatgi and published by Wiley-Interscience. This book was released on 1976-04-07 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sets and classes; Calculus; Linear Algebra; Probability; Random variables and their probability distributions; Moments and generating functions; Random vectors; Some special distributions; Limit theorems; Sample moments and their distributions; The theory of point estimation; Neyman-pearson theory of testing of hypotheses; Some further results on hypotheses testing; Confidence estimation; The general linear hypothesis; nonparametric statistical inference; Sequential statistical inference.
Download or read book Introduction to Probability written by Narayanaswamy Balakrishnan and published by John Wiley & Sons. This book was released on 2021-11-24 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.