EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Hilbert Space and the Theory of Spectral Multiplicity

Download or read book Introduction to Hilbert Space and the Theory of Spectral Multiplicity written by Paul R. Halmos and published by Courier Dover Publications. This book was released on 2017-11-15 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.

Book Introduction to Hilbert Space

Download or read book Introduction to Hilbert Space written by Sterling K. Berberian and published by American Mathematical Soc.. This book was released on 1999 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: ``This textbook has evolved from a set of lecture notes ... In both the course and the book, I have in mind first- or second-year graduate students in Mathematics and related fields such as Physics ... It is necessary for the reader to have a foundation in advanced calculus which includes familiarity with: least upper bound (LUB) and greatest lower bound (GLB), the concept of function, $\epsilon$'s and their companion $\delta$'s, and basic properties of sequences of real and complex numbers (convergence, Cauchy's criterion, the Weierstrass-Bolzano theorem). It is not presupposed that the reader is acquainted with vector spaces ... , matrices ... , or determinants ... There are over four hundred exercises, most of them easy ... It is my hope that this book, aside from being an exposition of certain basic material on Hilbert space, may also serve as an introduction to other areas of functional analysis.''

Book An Introduction to Hilbert Space

Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

Book A Hilbert Space Problem Book

Download or read book A Hilbert Space Problem Book written by P.R. Halmos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Book Lectures on Ergodic Theory

Download or read book Lectures on Ergodic Theory written by Paul R. Halmos and published by Courier Dover Publications. This book was released on 2017-12-13 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise classic by Paul R. Halmos, a well-known master of mathematical exposition, has served as a basic introduction to aspects of ergodic theory since its first publication in 1956. "The book is written in the pleasant, relaxed, and clear style usually associated with the author," noted the Bulletin of the American Mathematical Society, adding, "The material is organized very well and painlessly presented." Suitable for advanced undergraduates and graduate students in mathematics, the treatment covers recurrence, mean and pointwise convergence, ergodic theorem, measure algebras, and automorphisms of compact groups. Additional topics include weak topology and approximation, uniform topology and approximation, invariant measures, unsolved problems, and other subjects.

Book A Short Course on Spectral Theory

Download or read book A Short Course on Spectral Theory written by William Arveson and published by Springer Science & Business Media. This book was released on 2001-11-09 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Book Mathematical Methods in Quantum Mechanics

Download or read book Mathematical Methods in Quantum Mechanics written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2009 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Book Operators on Hilbert Space

Download or read book Operators on Hilbert Space written by V. S. Sunder and published by Springer. This book was released on 2016-08-05 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.

Book Topological Vector Spaces and Distributions

Download or read book Topological Vector Spaces and Distributions written by John Horvath and published by Courier Corporation. This book was released on 2013-10-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise exposition provides an excellent summary of the modern theory of locally convex spaces and develops the theory of distributions in terms of convolutions, tensor products, and Fourier transforms. 1966 edition.

Book Fourier Analysis on Groups

Download or read book Fourier Analysis on Groups written by Walter Rudin and published by Courier Dover Publications. This book was released on 2017-04-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained treatment by a master mathematical expositor ranges from introductory chapters on basic theorems of Fourier analysis and structure of locally compact Abelian groups to extensive appendixes on topology, topological groups, more. 1962 edition.

Book Functional Analysis

    Book Details:
  • Author : V.S. Sunder
  • Publisher : Springer Science & Business Media
  • Release : 1997
  • ISBN : 9783764358921
  • Pages : 260 pages

Download or read book Functional Analysis written by V.S. Sunder and published by Springer Science & Business Media. This book was released on 1997 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.

Book Spectral Theory and Its Applications

Download or read book Spectral Theory and Its Applications written by Bernard Helffer and published by Cambridge University Press. This book was released on 2013-01-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the basic tools in spectral analysis using numerous examples from the Schrödinger operator theory and various branches of physics.

Book An Introduction to Banach Space Theory

Download or read book An Introduction to Banach Space Theory written by Robert E. Megginson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.

Book Spectral Theory of Ordinary Differential Operators

Download or read book Spectral Theory of Ordinary Differential Operators written by Joachim Weidmann and published by Springer. This book was released on 2006-11-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.

Book Spectral Theory of Dynamical Systems

Download or read book Spectral Theory of Dynamical Systems written by Mahendra Ganpatrao Nadkarni and published by Springer Science & Business Media. This book was released on 1998 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats some basic topics in the spectral theory of dynamical systems, where by a dynamical system we mean a measure space on which a group of automorphisms acts preserving the sets of measure zero. The treatment is at a general level, but even here, two theorems which are not on the surface, one due to H. Helson and W. Parry and the other due to B. Host are presented. Moreover non­ singular automorphisms are considered and systems ofimprimitivity are discussed. and they are used to describe Riesz products, suitably generalised, are considered the spectral types and eigenvalues of rank one automorphisms. On the other hand topics such as spectral characterisations of various mixing conditions, which can be found in most texts on ergodic theory, and also the spectral theory of Gauss Dynamical Systems, which is very well presented in Cornfeld, Fomin, and Sinai's book on Ergodic Theory, are not treated in this book. A number of discussions and correspondence on email with El Abdalaoui El Houcein made possible the presentation of mixing rank one construction of D. S. Ornstein. Iam deeply indebted to G. R. Goodson. He has edited the book and suggested a number of corrections and improvements in both content and language.

Book Introductory Functional Analysis with Applications

Download or read book Introductory Functional Analysis with Applications written by Erwin Kreyszig and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry

Book Number Theory

    Book Details:
  • Author : George E. Andrews
  • Publisher : Courier Corporation
  • Release : 2012-04-30
  • ISBN : 0486135101
  • Pages : 292 pages

Download or read book Number Theory written by George E. Andrews and published by Courier Corporation. This book was released on 2012-04-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.