EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book INITIAL SLUDGE BATCH 4 TANK 40 DECANT VARIABILITY STUDY WITH FRIT 510

Download or read book INITIAL SLUDGE BATCH 4 TANK 40 DECANT VARIABILITY STUDY WITH FRIT 510 written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during the DWPF March outage. Based on the results of the preliminary assessment issued by the Savannah River National Laboratory (SRNL), the Liquid Waste Organization (LWO) issued a Technical Task Request (TTR) for SRNL to (1) perform a more detailed evaluation using updated SB4 compositional information and (2) assess the viability of Frit 510 and determine any potential impacts on the SB4 system. As defined in the TTR, LWO requested that SRNL validate the sludge--only SB4 flowsheet and the coupled operations flowsheet using the 100K gallon decant volume as well as the addition of 3 wt% sodium on a calcined oxide basis. Approximately 12 historical glasses were identified during a search of the ComProTM database that are located within at least one of the five glass regions defined by the proposed SB4 flowsheet options. While these glasses meet the requirements of a variability study there was some concern that the compositional coverage did not adequately bound all cases. Therefore, SRNL recommended that a supplemental experimental variability study be performed to support the various SB4 flowsheet options that may be implemented for future SB4 operations in DWPF. Eighteen glasses were selected based on nominal sludge projections representing the current as well as the proposed flowsheets over a WL interval of interest to DWPF (32-42%). The intent of the experimental portion of the variability study is to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Cases No. 1-5) are both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current DWPF process control models for durability. Frit 510 is a viable option for the processing of SB4 after a Tank 40 decant and the addition of products from the Actinide Removal Process (ARP). The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. The results of the variability study indicate that all of the study glasses (both quenched and centerline canister cooled (ccc)) have normalized releases for boron that are well below the reference EA glass (16.695 g/L). The durabilities of all of the study glasses are predictable using the current Product Composition Control System (PCCS) durability models with the exception of SB4VAR24ccc (Case No. 2 at 41%). PCCS is not applicable to non-homogeneous glasses (i.e. glasses containing crystals such as acmite and nepheline), thus SB4VAR24ccc should not be predictable as it contains nepheline. The presence of nepheline has been confirmed in both SB4VAR13ccc and SB4VAR24ccc by X-ray diffraction (XRD). These two glasses are the first results which indicate that the current nepheline discriminator value of 0.62 is not conservative. The nepheline discriminator was implemented into PCCS for SB4 based on the fact that all of the historical glasses evaluated with nepheline values of 0.62 or greater did not contain nepheline via XRD analysis. Although these two glasses do cause some concern over the use of the 0.62 nepheline value for future DWPF glass systems, the impact to the current SB4 system is of little concern. More specifically, the formation of nepheline was observed in glasses targeting 41 or 42% WL. Current processing of the Frit 510-SB4 system in DWPF has nominally targeted 34% WL. For the SB4 variability study glasses targeting these lower WLs, nepheline formation was not observed and the minimal difference in PCT response between quenched and ccc versions supported its absence.

Book VARIABILITY STUDY WITH FRIT 510 TO SUPPORT A SECOND TANK 40 DECANT

Download or read book VARIABILITY STUDY WITH FRIT 510 TO SUPPORT A SECOND TANK 40 DECANT written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times, which may eventually impact canister production rates, the Liquid Waste Organization (LWO) performed a 100K gallon supernate decant of Tank 40 in April 2008. SRNL performed a supplemental glass variability study to support the April 2008 100K gallon decant incorporating the impact of coupled operations (addition of the Actinide Removal Process (ARP) stream). Recently LWO requested that SRNL assess the impact of a second decant (up to 100K gallon) to the Frit 510-SB4 system. This second decant occurred in June 2008. LWO provided nominal compositions on May 6, 2008 representing Tank 40 prior to the second decant, following the second decant, and the SB4 Heel prior to blending with Tank 51 to constitute SB5. Paper study assessments were performed for these options based on sludge-only and coupled operations processing (ARP addition), as well as possible Na2O additions (via NaOH additions) to both flowsheets. A review of the ComProTM database relative to the compositional region defined by the projections after the second decant coupled with Frit 510 identified only a few glasses with similar glass compositions. These glasses were acceptable from a durability perspective, but did not sufficiently cover the new glass compositional region. Therefore, SRNL recommended that a supplemental variability study be performed to support the June 2008 Tank 40 decant. Glasses were selected for the variability study based on three sludge compositional projections (sludge-only, coupled and coupled + 2 wt% Na2O) at waste loadings (WLs) of interest to DWPF (32%, 35% and 38%). These nine glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). All of the glasses that were selected for this study satisfy the Product Composition Control System (PCCS) criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T{sub L} criterion and would not be considered processable based on Slurry Mix Evaporator (SME) acceptability decisions. The durabilities of all of the study glasses (both quenched and ccc) are well below that of the normalized leachate for boron (NL [B]) of the reference EA glass (16.695 g/L) and are predictable using the current PCCS models. Very little variation exists between the NL [B] of the quenched and ccc versions of the glasses. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections. Frit 510 is a viable option for the processing of SB4 after a second Tank 40 decant with or without the addition of products from the ARP stream as well as the 2 wt% Na2O addition. The addition of ARP had no negative impacts on the acceptability and predictability of the variability study glasses.

Book SLUDGE BATCH 4  SB4  AFTER A TANK 40 DECANT

Download or read book SLUDGE BATCH 4 SB4 AFTER A TANK 40 DECANT written by T. Tommy Edwards and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In early October 2006, the Liquid Waste Organization (LWO) began to consider decanting Tank 40 at the end of Sludge Batch 3 (SB3) processing and transferring the aqueous phase from the decant to Tank 51. This transfer would be done to decrease Tank 51 yield stress and facilitate the transfer of the contents of Tank 51 to Tank 40. The projected composition of Sludge Batch 4 (SB4) was adjusted by LWO to reflect the impact of the Tank 40 decant leading to new projected compositions for SB4, designated as the 10-04-06 and the 10-10-06 compositions. A comparison between these SB4 compositions and those provided in June 2006 indicates that the new compositions are slightly higher in Al2O3, Fe2O3, and U3O8 and slightly lower in SiO2. The most dramatic change, however, is the new projection's Na2O concentration, which is more than 4.5 wt% lower than the June 2006 projection. This is a significant change due to the frit development team's approach of aligning the Na2O concentration in a candidate frit to the Na2O content of the sludge. This approach enhances the projected operating window and the waste throughput potential for the resulting glass system while eliminating the potential for nepheline crystallization. Nepheline can have a detrimental impact on durability. Questions surfaced regarding the applicability of Frit 503 to these revised compositions since the Savannah River National Laboratory (SRNL) recommended Frit 503 for use with SB4 based on the June 2006 compositional projection without the Tank 40 decant. Based on the paper study assessments, the change in SB4's expected Na2O content had a significant, negative impact on the projected operating window for the Frit 503/SB4 glass system. While Frit 418 had slightly smaller waste loading (WL) intervals for the June 2006 SB4 projections as compared to Frit 503 and the Frit 418 glass systems were nepheline limited, Frit 418 had a slightly larger operating window for the 10-04-06 projection (as compared to Frit 503) and the Frit 418/10-04-06 glass system was no longer nepheline limited. Thus, strictly from the perspective of this paper study, Frit 418 was more attractive than Frit 503 for the new SB4 projected compositions. This comparison, however, does not reflect other aspects of interest for the glass systems such as their respective melt rates or the development of alternative frits to balance the projected operating windows, melt rate, waste throughput, and robustness to compositional variation. In discussions with Waste Solidification Engineering (WS-E) regarding the results being presented in this report, their decision was to utilize Frit 418 for initial processing of SB4. This decision was not only based on the paper study assessments presented in this report, but also on the fact that Frit 418 is currently being used to process SB3 and, perhaps more importantly, frit optimization efforts for SB4 may be premature given the uncertainties in tank transfer and heel volumes associated with the SB4 flowsheet. More specifically, WS-E indicated their plan to initiate processing with Frit 418 with subsequent authorization for the frit development team to optimize a frit based on the measured composition of SB4 after determination of the actual SB4 blend composition (i.e., both the SB3 and SB4 compositions and masses are known). Given this decision and recognizing that a SB4/Frit 503 variability study had been initiated as part of the qualification process, questions regarding the need for a supplemental variability study to demonstrate applicability of the process control models for a Frit 418 based system surfaced. This report addresses the need for a supplemental study and defines additional glasses to fill the compositional gaps. A total of 13 glasses (based on the 10-10-06 projection) were selected for the supplemental SB4/Frit 418 variability study. These glasses will be batched and melted following standard SRNL procedures, and a suite of characterization testing will be completed to measure the chemical durability of each glass composition.

Book Environmental Issues and Waste Management Technologies in the Materials and Nuclear Industries XII

Download or read book Environmental Issues and Waste Management Technologies in the Materials and Nuclear Industries XII written by Alex Cozzi and published by John Wiley & Sons. This book was released on 2009-09-24 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book documents a special collection of articles from a select group of invited prominent scientists from academia, national laboratories and industry who presented their work at the symposia on Environmental and Energy Issues at the 2008 Materials Science and Technology (MS&T’08) conference held in Pittsburgh, PA. These articles represent a summary of the presentations focusing on topics in nuclear, environmental, and green engineering were held, including a discussion of Waste Glass Leach Testing and Modeling.

Book THE IMPACT OF A TANK 40H DECANT ON THE PROJECTED OPERATING WINDOWS FOR SB4 AND GLASS SELECTION STRATEGY IN SUPPORT OF THE VARIABILITY STUDY

Download or read book THE IMPACT OF A TANK 40H DECANT ON THE PROJECTED OPERATING WINDOWS FOR SB4 AND GLASS SELECTION STRATEGY IN SUPPORT OF THE VARIABILITY STUDY written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Liquid Waste Organization (LWO) has requested that the Savannah River National Laboratory (SRNL) to assess the impact of a 100K gallon decant volume from Tank 40H on the existing sludge-only Sludge Batch 4 (SB4)-Frit 510 flowsheet and the coupled operations flowsheet (SB4 with the Actinide Removal Process (ARP)). Another potential SB4 flowsheet modification of interest includes the addition of 3 wt% sodium (on a calcined oxide basis) to a decanted sludge-only or coupled operations flowsheet. These potential SB4 flowsheet modifications could result in significant compositional shifts to the SB4 system. This paper study provides an assessment of the impact of these compositional changes to the projected glass operating windows and to the variability study for the Frit 510-SB4 system. The influence of the compositional changes on melt rate was not assessed in this study nor was it requested. Nominal Stage paper study assessments were completed using the projected compositions for the various flowsheet options coupled with Frit 510 (i.e., variation was not applied to the sludge and frit compositions). In order to gain insight into the impacts of sludge variation and/or frit variation (due to the procurement specifications) on the projected operating windows, three versions of the Variation Stage assessment were performed: (1) the traditional Variation Stage assessment in which the nominal Frit 510 composition was coupled with the extreme vertices (EVs) of each sludge, (2) an assessment of the impact of possible frit variation (within the accepted frit specification tolerances) on each nominal SB4 option, and (3) an assessment of the impact of possible variation in the Frit 510 composition due to the vendor's acceptance specifications coupled with the EVs of each sludge case. The results of the Nominal Stage assessment indicate very little difference among the various flowsheet options. All of the flowsheets provide DWPF with the possibility of targeting waste loadings (WLs) from the low 30s to the low 40s with Frit 510. In general, the Tank 40H decant has a slight negative impact on the operating window, but DWPF still has the ability to target current WLs (34%) and higher WLs if needed. While the decant does not affect practical WL targets in DWPF, melt rate could be reduced due to the lower Na2O content. If true, the addition of 3 wt% Na2O to the glass system may regain melt rate, assuming that the source of alkali is independent of the impact on melt rate. Coupled operations with Frit 510 via the addition of ARP to the decanted SB4 flowsheet also appears to be viable based on the projected operating windows. The addition of both ARP and 3 wt% Na2O to a decanted Tank 40H sludge may be problematic using Frit 510. Although the Nominal Stage assessments provide reasonable operating windows for the SB4 flowsheets being considered with Frit 510, introduction of potential sludge and/or frit compositional variation does have a negative impact. The magnitude of the impact on the projected operating windows is dependent on the specific flowsheet options as well as the applied variation. The results of the traditional Variation Stage assessments indicate that the three proposed Tank 40H decanted flowsheet options (Case No. 2--100K gallon decant, Case No. 3--100K gallon decant and 3 wt% Na2O addition and Case No. 4--100K gallon decant and ARP) demonstrate a relatively high degree of robustness to possible sludge variation over WLs of interest with Frit 510. However, the case where the addition of both ARP and 3 wt% Na2O is considered was problematic during the traditional Variation Stage assessment. The impact of coupling the frit specifications with the nominal SB4 flowsheet options on the projected operating windows is highly dependent on whether the upper WLs are low viscosity or liquidus temperature limited in the Nominal Stage assessments. Systems that are liquidus temperature limited exhibit a high degree of robustness to the applied frit and sludge variation, while those that are low viscosity limited show significant reductions (6 percentage points) in the upper WLs that can be obtained. When both frit and sludge variations are applied, the paper study results indicate that DWPF could be severely restricted in terms of projected operating windows for the ARP and Na2O addition options. An experimental variability study was not performed using the final SB4 composition and Frit 510 since glasses in the ComPro{trademark} data base were identified that bounded the potential operating window of this system. The bounding ARP case was not considered in that assessment. After the flowsheet cases were identified, an electronic search of ComPro{trademark} identified approximately 12 historical glasses within the compositional regions defined by at least one of the five flowsheet options, but the compositional coverage did not appear adequate to bound all cases.

Book SLUDGE BATCH VARIABILITY STUDY WITH FRIT 418

Download or read book SLUDGE BATCH VARIABILITY STUDY WITH FRIT 418 written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of thermal history. All of the normalized boron releases were less than 1 g/L. While all of the targeted glass compositions were predictable with respect to the Product Composition Control System (PCCS) models for durability, a small number of the measured glass compositions were located outside of the lower prediction limit indicating poorer durability than what was actually measured. These unpredictable glasses were in the same lithium metaborate (LM) preparation block during the chemical analyses, which resulted in measured compositions that were not representative of the target compositions. A review of the data did not indicate a clear cause for the problem. Re-digestion and re-measurement of three glasses from this preparation block yielded glass compositions closer to the target values and predicted PCT responses within the PCCS model uncertainty. Therefore, it is believed that the glasses were correctly fabricated and the targeted compositions are closer representations of the true compositions. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable for the SB6/Frit 418 glass system. PCT results from the glasses fabricated as part of the variability study were shown to be predictable and/or acceptable with respect to the DWPF PCCS models. In addition, the inclusion of ThO2 was shown to have minimal impact on the acceptability and predictability of the variability study glasses.

Book Frit Development Efforts for Sludge Batch 4  SB4

Download or read book Frit Development Efforts for Sludge Batch 4 SB4 written by T. B. Edwards and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The model-based assessments of nominal Sludge Batch 4 (SB4) compositions suggest that a viable frit candidate does not appear to be a limiting factor as the Closure Business Unit (CBU) considers various tank blending options and/or washing strategies. This statement is based solely on the projected operating windows derived from model predictions and does not include assessments of SO{sub 4} solubility or melt rate issues. The viable frit candidates covered a range of Na{sub 2}O concentrations (from 8% to 13%--including Frit 418 and Frit 320) using a ''sliding Na{sub 2}O scale'' concept (i.e., 1% increase in Na{sub 2}O being balanced by a 1% reduction in SiO{sub 2}) which effectively balances the alkali content of the incoming sludge with that in the frit to maintain and/or increase the projected operating window size while potentially leading to improved melt rate and/or waste loadings. This strategy or approach allows alternative tank blending strategies and/or different washing scenarios to be considered and accounted for in an effective manner without wholesale changes to the frit composition. In terms of projected operating windows, in general, the sludge/frit systems evaluated resulted in waste loading intervals from 25 to the mid-40%'s or even the mid-50%'s. The results suggest that a single frit could be selected for use with all 20 options which indicates some degree of frit robustness with respect to sludge compositional variation. In fact, use of Frit 418 or Frit 320 (the ''cornerstone'' frits given previous processing experience in the Defense Waste Processing Facility (DWPF)) are plausible for most (if not all) options being considered. However, the frit selection process also needs to consider potential processing issues such as melt rate. Based on historical trends between melt rate and total alkali content, one may elect to use the frit with the highest alkali content that still yields an acceptable operating window. However, other constraints may restrict access to higher waste loading or the proposed blending option being considered (e.g., sulfate content of the high-level waste and/or Chemical Processing Cell (CPC) issues may necessitate a more-washed sludge).

Book TANK 4 CHARACTERIZATION  SETTLING  AND WASHING STUDIES

Download or read book TANK 4 CHARACTERIZATION SETTLING AND WASHING STUDIES written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na2SO4 · Na2CO3). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

Book HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY

Download or read book HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY written by T. Tommy Edwards and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

Book Sample Preparation Techniques in Analytical Chemistry

Download or read book Sample Preparation Techniques in Analytical Chemistry written by Somenath Mitra and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of accurate sample preparation techniques cannot be overstated--meticulous sample preparation is essential. Often overlooked, it is the midway point where the analytes from the sample matrix are transformed so they are suitable for analysis. Even the best analytical techniques cannot rectify problems generated by sloppy sample pretreatment. Devoted entirely to teaching and reinforcing these necessary pretreatment steps, Sample Preparation Techniques in Analytical Chemistry addresses diverse aspects of this important measurement step. These include: * State-of-the-art extraction techniques for organic and inorganic analytes * Sample preparation in biological measurements * Sample pretreatment in microscopy * Surface enhancement as a sample preparation tool in Raman and IR spectroscopy * Sample concentration and clean-up methods * Quality control steps Designed to serve as a text in an undergraduate or graduate level curriculum, Sample Preparation Techniques in Analytical Chemistry also provides an invaluable reference tool for analytical chemists in the chemical, biological, pharmaceutical, environmental, and materials sciences.

Book Practical Environmental Analysis

Download or read book Practical Environmental Analysis written by Miroslav Radojevic and published by Royal Society of Chemistry. This book was released on 2015-11-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: New techniques, improved understanding and changes in regulations relating to environmental analysis means that students, technicians and lecturers alike need an up-to-date guide to practical environmental analysis. This unique book provides detailed instructions for practical experiments in environmental analysis. The comprehensive coverage includes the chemical analysis of important pollutants in air, water, soil and plant tissue, and the experiments generally require only basic laboratory equipment and instrumentation. The content is supported by theoretical material explaining, amongst other concepts, the principles behind each method and the importance of various pollutants. Also included are suggestions for projects and worked examples. Appendices cover environmental standards, practical safety and laboratory practice. Building on the foundations laid by the highly acclaimed first edition, this new edition has been revised and updated to include information on new monitoring techniques, the Air Quality Index, internet resources and professional ethics. Like its predecessor, this informative text is certain to be valued as an indispensable guide to practical environmental analysis by students on a variety of science courses and their lecturers. Reviews of the first edition: "I strongly urge academics in chemistry, biology, botany, soil science, geography and environmental science departments to give [this book] serious consideration as a course text." Malcolm Cresser, Environment Department, University of York, UK "Destined to become a course text for many university courses ... a high quality, informative introductory text ... there should be multiple copies on most university's library shelves." Environmental Conservation

Book EPA 510 B

    Book Details:
  • Author :
  • Publisher :
  • Release : 1994
  • ISBN :
  • Pages : 20 pages

Download or read book EPA 510 B written by and published by . This book was released on 1994 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Building Materials

Download or read book Building Materials written by S.K. Duggal and published by Routledge. This book was released on 2017-12-04 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on building materials includes discussion of structural clay products, rocks and stones, wood, materials for making concrete, ferrous and non-ferrous metals, and miscellaneous materials.

Book Rules of Thumb in Engineering Practice

Download or read book Rules of Thumb in Engineering Practice written by Donald R. Woods and published by John Wiley & Sons. This book was released on 2007-06-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: An immense treasure trove containing hundreds of equipment symptoms, arranged so as to allow swift identification and elimination of the causes. These rules of thumb are the result of preserving and structuring the immense knowledge of experienced engineers collected and compiled by the author - an experienced engineer himself - into an invaluable book that helps younger engineers find their way from symptoms to causes. This sourcebook is unrivalled in its depth and breadth of coverage, listing five important aspects for each piece of equipment: * area of application * sizing guidelines * capital cost including difficult-to-find installation factors * principles of good practice, and * good approaches to troubleshooting. Extensive cross-referencing takes into account that some items of equipment are used for many different purposes, and covers not only the most familiar types, but special care has been taken to also include less common ones. Consistent terminology and SI units are used throughout the book, while a detailed index quickly and reliably directs readers, thus aiding engineers in their everyday work at chemical plants: from keywords to solutions in a matter of minutes.

Book Water and Wastewater Treatment Technologies

Download or read book Water and Wastewater Treatment Technologies written by Xuan-Thanh Bui and published by Springer. This book was released on 2018-11-07 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses major technological advances in the treatment and re-use of wastewater. Its focus is on both novel treatment strategies and the modifications and adaptions of conventional processes to optimize the treatment of a complex variety of pollutants, including organic matter, chemicals and micropollutants in different water resources, as well as the integration of water treatment with bioelectricity production. Written by leading researchers in the field, it will be of interest to a wide range of researchers in both industry and academia.

Book Onsite Wastewater Treatment Systems Manual

Download or read book Onsite Wastewater Treatment Systems Manual written by and published by . This book was released on 2002 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.

Book The Scientific Basis of Flotation

Download or read book The Scientific Basis of Flotation written by K.J. Ives and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: K.J.Ives Professor of Public Health Engineering University College London Industrial application of the use of bubbles to float fine particles in water began before the beginning of this century, in the field of mineral processing. Such bubble flotation was applied very little outside mineral processing, until about 1960 when the dissolved air process, which has already had some success in the pulp and paper industry, was applied to water and wastewater treatment. The subsequent two decades saw not only a growth development for water and wastewater treatment, but also a growing cognisance of the similarities that existed with mineral processing flotation. Therefore the time seemed ripe in 1982 for a joint meeting between experts in these two major fields of flotation to put together the Scientific Basis of Flotation in the form of a NATO Advanced Study Institute. Attended by about 60 specialists, mainly post doctoral, from 17 countries, this Study Institute in residence for two weeks in Christ's College, Cambridge (UK) heard presentations from several international experts, principally the 8 co-authors of this book. The integration of the various scientific disciplines of physics, physical chemistry, colloid science, hydrodynamics and process engineering showed where the common basiS, and occasional important differences, of flotation could be applied to mineral processing, water and wastewater treatment, and indeed some other process industries (for example: pharmaceuticals, and food manufacture).