EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improved Modeling of the Steam assisted Gravity Drainage  SAGD  Process

Download or read book Improved Modeling of the Steam assisted Gravity Drainage SAGD Process written by Prince Nnamdi Azom and published by . This book was released on 2013 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Steam-Assisted Gravity Drainage (SAGD) Process involves the injection of steam through a horizontal well and the production of heavy oil through a lower horizontal well. Several authors have tried to model this process using analytical, semi-analytical and fully numerical means. In this dissertation, we improve the predictive ability of previous models by accounting for the effect of anisotropy, the effect of heat transfer on capillarity and the effect of water-in-oil (W/O) emulsion formation and transport which serves to enhance heat transfer during SAGD. We account for the effect of anisotropy during SAGD by performing elliptical transformation of the resultant gravity head and resultant oil drainage vectors on to a space described by the vertical and horizontal permeabilities. Our results, show that unlike for the isotropic case, the effect of anisotropy is time dependent and there exists a given time beyond which it ceases to have any effect on SAGD rates. This result will impact well spacing design and optimization during SAGD. Butler et al. (1981) derived their classical SAGD model by solving a 1-D heat conservation equation for single phase flow. This model has excellent predictive capability at experimental scales but performs poorly at field scales. By assuming a linear saturation -- temperature relationship, Sharma and Gates (2010b) developed a model that accounts for multiphase flow ahead of the steam chamber interface. In this work, by decomposing capillary pressure into its saturation and temperature components, we coupled the mass and energy conservation equations and showed that the multi-scale, multiphase flow phenomenon occurring during SAGD is the classical Marangoni (or thermo-capillary) effect which can be characterized by the Marangoni number. At low Marangoni numbers (typical of experimental scales) we get the Butler solution while at high Marangoni numbers (typical of field scales), we approximate the Sharma and Gates solution. The Marangoni flow concept was extended to the Expanding Solvent SAGD (ES-SAGD) process and our results show that there exists a given Marangoni number threshold below which the ES-SAGD process will not fare better than the SAGD process. Experimental results presented in Sasaki et al. (2002) demonstrate the existence of water-in-oil emulsions adjacent to the steam chamber wall during SAGD. In this work we show that these emulsions enhanced heat transfer at the chamber wall and hence oil recovery. We postulate that these W/O emulsions are principally hot water droplets that carry convective heat energy. We perform calculations to show that their presence can practically double the effective heat transfer coefficient across the steam chamber interface which overcomes the effect of reduced oil rates due to the increased emulsified phase viscosity. Our results also compared well with published experimental data. The SAGD (and ES-SAGD) process is a short length-scaled process and hence, short length-scaled phenomena (typically ignored in other EOR or conventional processes) such as thermo-capillarity and in-situ emulsification should not be ignored in predicting SAGD recoveries. This work will find unique application in predictive models used as fast proxies for predicting SAGD recovery and for history matching purposes.

Book Improved Upscaling Scheme for Steam Assisted Gravity Drainage  SAGD  and Semi Analytical Modeling of the SAGD Rising Phase

Download or read book Improved Upscaling Scheme for Steam Assisted Gravity Drainage SAGD and Semi Analytical Modeling of the SAGD Rising Phase written by Mayuri Murugesu and published by . This book was released on 2015 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) process commonly applied for heavy oil and bitumen recovery consists of two production phases: a steam rising phase and a spreading phase. Extensive research has been done on modeling the SAGD spreading phase, but fewer analytical/semi-analytical models exist for the unstable rising phase. This thesis presents a semi-analytical method, MS-SAGD, to model the SAGD rising phase. In addition, an improved upscaling technique that takes into account the unique flow geometry observed during SAGD is presented that enables more accurate predictions of oil recovery rates in heterogeneous reservoirs during both phases. The MS-SAGD semi analytical method, based on the Myhill and Stegemeier frontal advance model for steam drive processes, tracks the growth of the steam chamber as a function of time. Two different oil production rate models are proposed and the comparison of results from flow and transport simulations is presented. Model 1 is similar to Butler's approach using the rising steam finger theory. Model 2 is obtained by modifying Butler's spreading phase model and applying it to the rising phase. Both models use the outputs of the MS-SAGD model to estimate the oil production rates during the SAGD rising phase. The application of the MS-SAGD model is extended to heterogeneous reservoirs by treating the heated volume estimated by the original MS-SAGD model as an effective heated volume. In addition, the homogeneous permeability in the proposed oil production rate model is replaced with an upscaled effective permeability that is a function of time. The improved upscaling technique is based on a global approach that minimizes the differences between the fine scale and upscaled model pressure solutions. Sources and sinks by means of wells are used in the upscaling to simulate the convergent flow pattern observed during the SAGD process. The proposed models outperform existing analytical/semi-analytical methods and are in good agreement with the results obtained from CMG-STARSTM reservoir simulation. Both oil production rate models perform comparatively well, producing similar results in terms of cumulative oil production. However, Model 2 performs better than Model 1 in describing the overall behavior of the oil production observed in the reservoir simulation and is thus a better model for the SAGD rising phase.

Book Predicting and Optimizing the Performance of the Expanding Solvent Steam Assisted Gravity Drainage  ES SAGD  Process Using an Improved Semi analytical Proxy Model

Download or read book Predicting and Optimizing the Performance of the Expanding Solvent Steam Assisted Gravity Drainage ES SAGD Process Using an Improved Semi analytical Proxy Model written by Krupa Kannan and published by . This book was released on 2014 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam Assisted Gravity Drainage (SAGD) is a commonly used EOR/IOR method for improving recovery in heavy oil reservoirs. However, continued research for a more energy efficient method has led to the development of an improved version called Expanding Solvent (ES)-SAGD, which has the potential to replace conventional SAGD method for production from some heavy oil reservoirs. This thesis provides some insights into determination of the reservoir performance of ES-SAGD process using an improved semi-analytical method. This model is then used for optimizing the solvent requirement while minimizing the steam injected. The semi-analytical model is determined by combining Butler's oil drainage analytical model and solvent dilution effect of VAPEX process. The predictive ability of this model was improved by accounting for concentration and viscosity dependent solvent diffusion process. Results from this extended model in terms of solvent injection, oil production and Cumulative Steam to Oil Ratio (cSOR) were compared with that of reservoir simulation at various levels of grid resolution. Furthermore, the results from simulation were analyzed using response surface methodology including gradient based optimization technique to determine optimum operating conditions, which was then compared with more robust multi-objective optimization based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Pareto-optimality. Both the optimization techniques were used within the improved semi-analytical formulation to come up with optimized operational parameters. Modeling solvent diffusivity as a function of solvent concentration gives better results than those obtained using a constant value for diffusivity. Moreover, results for some key performance factors are in good agreement between the semi-analytical model and the numerical simulation, rendering this model suitable for performing solvents-screening studies. The multi-objective optimization framework within the semi-analytical model is demonstrated to be a feasible option for determining optimum ranges of key operating parameters that would result in success of the project. Intermediate values of solvent fraction ranging 0.1 to 0.2 for almost the entire range of injection pressures result in high bitumen recoveries and relatively low cSOR. The results indicate that higher values of solvent fraction at low operating pressures and lower values of solvent fraction at high operating pressures lead to optimized oil recovery rate and lower steam-oil-ratio. The multi-objective optimization process results in several combinations of control parameters that yield solutions along the Pareto-optimum front. These combinations are all viable solutions to the optimization problem.

Book Improved Steam Assisted Gravity Drainage  SAGD  Performance with Solvent as Steam Additive

Download or read book Improved Steam Assisted Gravity Drainage SAGD Performance with Solvent as Steam Additive written by Weiqiang Li and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery mechanisms under SAGD process with different injection fluids, including steam, solvent or steam with solvent. 2D simulation studies based on typical Athabasca reservoir properties have been performed. Results show that a successful solvent co-injection design can utilize the advantages of solvent and steam. There is an optimal solvent type and concentration ratio range for a particular reservoir and operating condition. Long, continuous shale barriers located vertically above or near the wellbore delay production performance significantly. Co-injecting a multi-component solvent can flush out the oil in different areas with different drainage mechanisms from vaporized and liquid components. Placing an additional injector at the top of the reservoir results only in marginal improvement. The pure high-temperature diluent injection appears feasible, although further technical and economic evaluation of the process is required. A 2D scaled physical model was fabricated that represented in cross-section a half symmetry element of a typical SAGD drainage volume in Athabasca. The experimental results show co-injecting a solvent mixture of C7 and xylene with steam gives better production performance than the injection of pure steam or steam with C7 at the study condition. Compared to pure steam injection runs (Run 0 and 1), coinjecting C7 (Run 2) with steam increases the ultimate recovery factor of oil inside the cell from 25 percent to 29 percent and decreases the ultimate CSOR from 2.2 to 1.9 and the ultimate CEOR from 4892 J/cm 3 to 4326 J/cm 3 ; coinjecting C7 and Xylene (Run 3) increases the ultimate recovery factor of oil from 25 percent to 34 percent, and decreases the ultimate CSOR 2.2 to 1.6 and the ultimate CEOR from 4892 J/cm 3 to 3629 J/cm 3 . Analyses of the experimental results indicate that partial pressure and the near wellbore flow play important roles in production performance. In conclusion, a successful solvent injection design can effectively improve the production performance of SAGD. Further research on evaluating the performance of various hydrocarbon types as steam additives is desirable and recommended.

Book A NUMERICAL ANALYSIS OF THE SINGLE WELL STEAM ASSISTED GRAVITY DRAINAGE  SW SAGD  PROCESS

Download or read book A NUMERICAL ANALYSIS OF THE SINGLE WELL STEAM ASSISTED GRAVITY DRAINAGE SW SAGD PROCESS written by and published by . This book was released on 2001 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) is an effective method to produce heavy oil and bitumen which are important energy resources. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer helping to displace heated oil. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to begin. Ideally heating should occur with minimal circulation or bypassing of steam. We have investigated early-time processes to improve reservoir heating. A numerical simulation study was performed to gauge combinations of cyclic steam injection and steam circulation prior to SAGD in an effort to better understand and improve early-time performance. Results from this study, include cumulative recoveries, temperature distributions, and production rates. It is found that cyclic steaming of the reservoir offers the most favorable option for heating the near-wellbore area to create conditions that improve initial SAGD response. More favorable reservoir conditions such as low viscosity, thick oil zones, and solution gas, improved reservoir response. Under unfavorable conditions, response was limited.

Book Proceedings of the International Field Exploration and Development Conference 2022

Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.

Book Numerical Modeling of Geomechanical Effects of Steam Injection in SAGD Heavy Oil Recovery

Download or read book Numerical Modeling of Geomechanical Effects of Steam Injection in SAGD Heavy Oil Recovery written by Setayesh Zandi and published by . This book was released on 2011 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Steam Assisted Gravity Drainage (SAGD) process is a thermal enhanced oil recovery (EOR) method that appears tremendously successful, especially for bitumen. SAGD process results in a complex interaction of geomechanics and multiphase flow in cohesionless porous media. In this process, continuous steam injection changes reservoir pore pressure and temperature, which can increase or decrease the effective stresses in the reservoir. Quantification of the state of deformation and stress in the reservoir is essential for the correct prediction of reservoir productivity, seal integrity, hydro fracturing, well failure and also for the interpretation of 4D seismic used to follow the development of the steam chamber. In SAGD process, the analysis of reservoir-geomechanics is concerned with the simultaneous study of fluid flow and mechanical response of the reservoir. Reservoir-geomechanics coupled simulation is still an important research topic. To perform this kind of simulation, a solution is to use a finite element based simulator to describe geomechanics and a finite volume based simulator to describe fluid flow. In this thesis, the SAGD coupled thermo-hydro-mechanical modelling is conducted using PumaFlow reservoir simulator and Abaqus as the geomechanical simulator. The main issues being investigated in this study were (1) the coupling strategy, (2) the geometry and (3) type of gridding system. This work was performed on synthetic cases.

Book A New Steam Assisted Gravity Drainage Process Utilizing Vertical Wells

Download or read book A New Steam Assisted Gravity Drainage Process Utilizing Vertical Wells written by Mohamed Ezeddin Shirif and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel process utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage has been developed. In the vertical well steam assisted gravity drainage (VWSAGD) process, the vertical well includes two production strings which are separated by three packers (one dual and two single packers): the short injection string (SIS) is attached to the bottom of the annulus and completed in the top quarter of the perforated formation, while the long production string (LPS) is attached to the bottom of the production tubing and completed in the bottom quarter of the perforated formation. The new process (VWSAGD) requires an initial start-up period (warm-up stage) where the steam is injected into both of the injection strings and production string for a specified period of time of about 14-30 days; then both strings are closed to injection for a specified time period of approximately 7-10 days (soaking period). After the initial warm-up and the soaking period, the long production string is opened for production, and the short injection string is opened to continuous steam injection for the rest of the specified simulation time. A numerical simulation study using the CMG-STAR Simulator was performed to compare the performance of the new VWSAGD process against the conventional steam assisted gravity drainage (HWSAGD) process under the same operating conditions. Two identical reservoir models were simulated for the two processes using 3-Dimensional, black heavy oil model (14°API). Each reservoir type consists of 49x49x20 grid blocks on a 5 Acre model which incorporated a typical heavy oil reservoir rock and fluid properties taken from the SPE case study, stspe001.dat (CMG 2014 release). A sensitivity analysis for both processes was performed for the grid density, soaking time, steam quality, bottom hole producing pressure, steam injection rate, reservoir thickness, reservoir area, and horizontal to vertical permeability anisotropy. More preferable reservoir conditions are those such as high horizontal to vertical permeability ratio, thick reservoir oil zones, as well as improved reservoir recovery for the VWSAGD process. Under unfavorable conditions such as thin reservoir oil zones, an improved reservoir recovery response was limited for the VWSAGD process and could be uneconomical in real field cases. Finally, the simulation results from this study include cumulative recoveries, Steam oil ratios, produced water-oil ratios, pressure and temperature distributions, and production rates. Also, the results from this study have shown that the new VWSAGD process is more favorable than the conventional HWSAGD process.

Book Computer Simulation of Single Well Steam Assisted Gravity Drainage  SW SAGD   SUPRI TR 119

Download or read book Computer Simulation of Single Well Steam Assisted Gravity Drainage SW SAGD SUPRI TR 119 written by and published by . This book was released on 1999 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) is an effective method of producing heavy oil and bitumen. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer. A steam chamber grows around the injection well and helps displace heated oil toward the production well. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. This may include steam injection from the toe of the horizontal well with production at the heel. Obvious advantages of SW-SAGD include cost savings and utility in relatively thin reservoirs. However, the process is technically challenging. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to take place. Ideally heating should occur with minimal circulation or bypassing of stream. Since project economics are sensitive to early production response, we are interested in optimizing the start -up procedure.

Book Well Completion Design

Download or read book Well Completion Design written by Jonathan Bellarby and published by Elsevier. This book was released on 2009-04-13 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completions are the conduit between hydrocarbon reservoirs and surface facilities. They are a fundamental part of any hydrocarbon field development project. The have to be designed for safely maximising the hydrocarbon recovery from the well and may have to last for many years under ever changing conditions. Issues include: connection with the reservoir rock, avoiding sand production, selecting the correct interval, pumps and other forms of artificial lift, safety and integrity, equipment selection and installation and future well interventions. - Course book based on course well completion design by TRACS International - Unique in its field: Coverage of offshore, subsea, and landbased completions in all of the major hydrocarbon basins of the world - Full colour

Book Modeling Steam Assisted Gravity Drainage in Heterogeneous Reservoirs Using Different Upscaling Techniques

Download or read book Modeling Steam Assisted Gravity Drainage in Heterogeneous Reservoirs Using Different Upscaling Techniques written by Dhananjay Kumar and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents different methods that improve the ability to relate the flow properties of heterogeneous reservoirs to equivalent anisotropic flow properties in order to predict the performance of the Steam Assisted Gravity Drainage (SAGD) process. Process simulation using full scale heterogeneous reservoirs are inefficient and so the need arises to develop equivalent anisotropic reservoirs that can capture the effect of reservoir heterogeneity. Since SAGD is highly governed by permeability in the reservoir, effective permeability values were determined using different upscaling techniques. First, a flow-based upscaling technique was employed and a semi-analytical model, derived by Azom and Srinivasan, was used to determine the accuracy of the upscaling. The results indicated inadequacy of flow-based upscaling schemes to derive effective direction permeabilities consistent with the unique flow geometry during the SAGD process. Subsequently, statistical upscaling was employed using full 3D models to determine relationships between the heterogeneity variables: k[subscript italic v]/k[subscript italic h], correlation length and shale proportion. An iterative procedure coupled with an optimization algorithm was deployed to determine optimal k[subscript italic v] and k[subscript italic k] values. Further regression analysis was performed to explore the relationship between the variables of shale heterogeneity in a reservoir and the corresponding effective properties. It was observed that increased correlation lengths and shale proportions both decrease the dimensionless flow rates at given dimensionless times and that the semi-analytical model was more accurate for cases that contained lower shale proportions. Upscaled heterogeneous values inputted into the semi-analytical model resulted in underestimation of oil flow rate due to the inability to fully account for the impact of reservoir barriers and the configuration of flow streamlines during the SAGD process. Statistical upscaling using geometric averaging as the initial guess was used as the basis for developing a relationship between correlation length, shale proportion and k[subscript italic v]/k[subscript italic h]. The initial regression models did not accurately predict the anisotropic ratio because of insufficient data points along the regression surface. Subsequently a non-linear regression model that was 2nd order in both length and shale proportion was calibrated by executing more cases with varying levels of heterogeneity and the regression model revealed excellent matches to heterogeneous models for the prediction cases.

Book Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Download or read book Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications written by Mehrdad Massoudi and published by MDPI. This book was released on 2020-04-16 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.

Book Sand Control in Well Construction and Operation

Download or read book Sand Control in Well Construction and Operation written by Davorin Matanovic and published by Springer Science & Business Media. This book was released on 2012-02-21 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Produced sand causes a lot of problems. From that reasons sand production must be monitored and kept within acceptable limits. Sand control problems in wells result from improper completion techniques or changes in reservoir properties. The idea is to provide support to the formation to prevent movement under stresses resulting from fluid flow from reservoir to well bore. That means that sand control often result with reduced well production. Control of sand production is achieved by: reducing drag forces (the cheapest and most effective method), mechanical sand bridging (screens, gravel packs) and increasing of formation strength (chemical consolidation). For open hole completions or with un-cemented slotted liners/screens sand failure will occur and must be predicted. Main problem is plugging. To combat well failures due to plugging and sand breakthrough Water-Packing or Shunt-Packing are used.

Book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. Introduces emerging hybrid EOR processes and their technical details Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Book A Separate Phase Drag Model and a Surrogate Approximation for Simulation of the Steam Assisted Gravity Drainage  SAGD  Process

Download or read book A Separate Phase Drag Model and a Surrogate Approximation for Simulation of the Steam Assisted Gravity Drainage SAGD Process written by and published by . This book was released on 2016 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy's law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed. We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.

Book Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands

Download or read book Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands written by James G. Speight and published by Gulf Professional Publishing. This book was released on 2016-02-24 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Second Edition, explores the importance of enhanced oil recovery (EOR) and how it has grown in recent years thanks to the increased need to locate unconventional resources such as heavy oil and shale. Unfortunately, petroleum engineers and managers aren't always well-versed in the enhancement methods that are available when needed or the most economically viable solution to maximize their reservoir's productivity. This revised new edition presents all the current methods of recovery available, including the pros and cons of each. Expanded and updated as a great preliminary text for the newcomer to the industry or subject matter, this must-have EOR guide teaches all the basics needed, including all thermal and non-thermal methods, along with discussions of viscosity, sampling, and the technologies surrounding offshore applications. - Enables users to quickly learn how to choose the most efficient recovery method for their reservoir while evaluating economic conditions - Presents the differences between each method of recovery with newly added real-world case studies from around the world - Helps readers stay competitive with the growing need of extracting unconventional resources with new content on how these complex reservoirs interact with injected reservoir fluids

Book Advanced Reservoir Management and Engineering

Download or read book Advanced Reservoir Management and Engineering written by Tarek Ahmed and published by Gulf Professional Publishing. This book was released on 2011-09-28 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1. Fundamentals of Well Testing -- Chapter 2. Decline and Type-Curves Analysis -- Chapter 3. Water Influx -- Chapter 4. Unconventional Gas Reservoirs -- Chapter 5. Performance of Oil Reservoirs -- Chapter 6. Predicting Oil Reservoir Performance -- Chapter 7. Fundamentals of Enhanced Oil Recovery -- Chapter 8. Economic Analysis -- Chapter 9. Analysis of Fixed Capital Investments -- Chapter 10. Advanced Evaluation Approaches -- Chapter 11. Professionalism and Ethics.