EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graphene Nanoelectronics

Download or read book Graphene Nanoelectronics written by Raghu Murali and published by Springer Science & Business Media. This book was released on 2012-03-09 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.

Book Graphene Nanoelectronics

    Book Details:
  • Author : Hassan Raza
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-05
  • ISBN : 3642229840
  • Pages : 611 pages

Download or read book Graphene Nanoelectronics written by Hassan Raza and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is a perfectly two-dimensional single-atom thin membrane with zero bandgap. It has attracted huge attention due to its linear dispersion around the Dirac point, excellent transport properties, novel magnetic characteristics, and low spin-orbit coupling. Graphene and its nanostructures may have potential applications in spintronics, photonics, plasmonics and electronics. This book brings together a team of experts to provide an overview of the most advanced topics in theory, experiments, spectroscopy and applications of graphene and its nanostructures. It covers the state-of-the-art in tutorial-like and review-like manner to make the book useful not only to experts, but also newcomers and graduate students.

Book 2D Materials for Nanoelectronics

Download or read book 2D Materials for Nanoelectronics written by Michel Houssa and published by CRC Press. This book was released on 2016-05-05 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris

Book Metrology and Diagnostic Techniques for Nanoelectronics

Download or read book Metrology and Diagnostic Techniques for Nanoelectronics written by Zhiyong Ma and published by CRC Press. This book was released on 2017-03-27 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoelectronics is changing the way the world communicates, and is transforming our daily lives. Continuing Moore’s law and miniaturization of low-power semiconductor chips with ever-increasing functionality have been relentlessly driving R&D of new devices, materials, and process capabilities to meet performance, power, and cost requirements. This book covers up-to-date advances in research and industry practices in nanometrology, critical for continuing technology scaling and product innovation. It holistically approaches the subject matter and addresses emerging and important topics in semiconductor R&D and manufacturing. It is a complete guide for metrology and diagnostic techniques essential for process technology, electronics packaging, and product development and debugging—a unique approach compared to other books. The authors are from academia, government labs, and industry and have vast experience and expertise in the topics presented. The book is intended for all those involved in IC manufacturing and nanoelectronics and for those studying nanoelectronics process and assembly technologies or working in device testing, characterization, and diagnostic techniques.

Book Nanoelectronics and Materials Development

Download or read book Nanoelectronics and Materials Development written by Abhijit Kar and published by BoD – Books on Demand. This book was released on 2016-07-27 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current edited book presents some of the most advanced research findings in the field of nanotechnology and its application in materials development in a very concise form. The main focus of the book is dragged toward those materials where electronic properties are manipulated for development of advanced materials. We have discussed about the extensive usage of nanotechnology and its impact on various facets of the chip-making practice from materials to devices such as basic memory, quantum dots, nanotubes, nanowires, graphene-like 2D materials, and CIGS thin-film solar cells as energy-harvesting devices. Researchers as well as students can gain valuable insights into the different processing of nanomaterials, characterization procedures of the materials in nanoscale, and their different functional properties and applications.

Book Nano Bio  Electronic  Photonic and MEMS Packaging

Download or read book Nano Bio Electronic Photonic and MEMS Packaging written by C. P.(Ching-Ping) Wong and published by Springer Nature. This book was released on 2021-03-17 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how nanofabrication techniques and nanomaterials can be used to customize packaging for nano devices with applications to electronics, photonics, biological and biomedical research and products. It covers topics such as bio sensing electronics, bio device packaging, MEMS for bio devices and much more, including: Offers a comprehensive overview of nano and bio packaging and their materials based on their chemical and physical sciences and mechanical, electrical and material engineering perspectives; Discusses nano materials as power energy sources, computational analyses of nano materials including molecular dynamic (MD) simulations and DFT calculations; Analyzes nanotubes, superhydrophobic self-clean Lotus surfaces; Covers nano chemistry for bio sensor/bio material device packaging. This second edition includes new chapters on soft materials-enabled packaging for stretchable and wearable electronics, state of the art miniaturization for active implantable medical devices, recent LED packaging and progress, nanomaterials for recent energy storage devices such as lithium ion batteries and supercapacitors and their packaging. Nano- Bio- Electronic, Photonic and MEMS Packaging is the ideal book for all biomedical engineers, industrial electronics packaging engineers, and those engaged in bio nanotechnology applications research.

Book Advanced Nanoelectronics

Download or read book Advanced Nanoelectronics written by Razali Ismail and published by CRC Press. This book was released on 2018-09-03 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Book Graphene Based Polymer Nanocomposites in Electronics

Download or read book Graphene Based Polymer Nanocomposites in Electronics written by Kishor Kumar Sadasivuni and published by Springer. This book was released on 2015-01-19 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.

Book Nano Bio Probe Design and Its Application for Biochemical Analysis

Download or read book Nano Bio Probe Design and Its Application for Biochemical Analysis written by Bang-Ce Ye and published by Springer Science & Business Media. This book was released on 2012-05-08 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, Prof. Ye and his coworkers propose and review the concept of nano-bio probe design for biochemical analysis on the basis of their recent published works. A unique biochemical analysis technology based on fluorescence polarization enhanced by nanoparticles is described here with successful applications in environmental monitoring, rapid and sensitive sensing protease activity and high-throughput screening of inhibitors. Furthermore, they introduce a versatile molecular beacon (MB)-like probe for the multiplex sensing of targets such as sequence-specific DNA, protein, metal ions and small molecule compounds based on the self-assembled biomolecule-graphene conjugates. Besides, some colorimetric and luminescence probes utilizing metal nanoparticles for biochemical applications are also presented, such as chiral enantiomer discrimination and separation, environmental monitoring, clinic diagnosis and etc.

Book 2D Nanoelectronics

Download or read book 2D Nanoelectronics written by Mircea Dragoman and published by Springer. This book was released on 2016-12-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.

Book Introduction to the Physics of Nanoelectronics

Download or read book Introduction to the Physics of Nanoelectronics written by Seng Ghee Tan and published by Elsevier. This book was released on 2012-03-28 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices. Theoretical methodology is developed using quantum mechanical and non-equilibrium Green’s function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron’s spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored. Begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics Encompasses quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices Comprehensively introduces topological dynamics and gauge potential with the relevant mathematics, and extensively discusses their application in nanoelectronic systems

Book Graphene

    Book Details:
  • Author : E. L. Wolf
  • Publisher : Oxford University Press, USA
  • Release : 2014
  • ISBN : 0199645868
  • Pages : 319 pages

Download or read book Graphene written by E. L. Wolf and published by Oxford University Press, USA. This book was released on 2014 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete description of the science and applications of graphene, a revolutionary two-dimensional one-atom-thick material of exceedingly high electrical conductivity and tensile strength.

Book Low Dimensional Nanoscale Electronic and Photonic Devices 4

Download or read book Low Dimensional Nanoscale Electronic and Photonic Devices 4 written by L.-J. Chou and published by The Electrochemical Society. This book was released on 2010-10 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Low-Dimensional Nanoscale Electronic and Photonic Devices 4¿, held during the 218th meeting of The Electrochemical Society, in Las Vegas, Nevada from October 10 to 15, 2010.

Book Emerging Nanoelectronic Devices

Download or read book Emerging Nanoelectronic Devices written by An Chen and published by John Wiley & Sons. This book was released on 2015-01-27 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.

Book Vacuum Nanoelectronic Devices

Download or read book Vacuum Nanoelectronic Devices written by Anatoliy Evtukh and published by John Wiley & Sons. This book was released on 2016-03-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments. This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: • In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. • Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. • Unique coverage of quantum physical results for electron-field emission and novel electron sources with quantum effects, relevant for many applications such as electron microscopy, electron lithography, imaging and communication systems and signal processing. • New approaches for realization of electron sources with required and optimal parameters in electronic devices such as vacuum micro and nanoelectronics. This is an essential reference for researchers working in terahertz technology wanting to expand their knowledge of electron beam generation in vacuum and electron source quantum concepts. It is also valuable to advanced students in electronics engineering and physics who want to deepen their understanding of this topic. Ultimately, the progress of the quantum nanostructure theory and technology will promote the progress and development of electron sources as main part of vacuum macro-, micro- and nanoelectronics.

Book Nanoelectronics

    Book Details:
  • Author :
  • Publisher : Elsevier
  • Release : 2018-10-05
  • ISBN : 0128133546
  • Pages : 477 pages

Download or read book Nanoelectronics written by and published by Elsevier. This book was released on 2018-10-05 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used. Shows how electronic transport works at the nanoscale level Demonstrates how nanotechnology can help engineers create more effective circuits and systems Assesses the most commonly used nanoelectronic devices, explaining which is best for different situations

Book The Non Equilibrium Green s Function Method for Nanoscale Device Simulation

Download or read book The Non Equilibrium Green s Function Method for Nanoscale Device Simulation written by Mahdi Pourfath and published by Springer. This book was released on 2014-07-05 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.