EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Genetic Mapping of Resistance to Soybean Sudden Death Syndrome and Soybean Oil Quality

Download or read book Genetic Mapping of Resistance to Soybean Sudden Death Syndrome and Soybean Oil Quality written by Paul Joseph Collins and published by . This book was released on 2019 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean (Glycine max) is the world's leading oilseed crop and is a critical source of protein for poultry and swine production. Soybean production is limited by many biotic factors including soybean sudden death syndrome (SDS) which is caused by a soil-borne fungal pathogen, Fusarium virguliforme. Effective management methods for soybean sudden death syndrome include long-term rotations, fluopyram seed treatment, and planting SDS resistant varieties. Host resistance to F. virguliforme is a quantitative resistance, as it is controlled by many genes, largely of small effect. To more efficiently breed SDS resistant soybean varieties, researchers have sought to identify the loci on the soybean genome responsible for SDS-resistance. Three recombinant inbred line (RIL) populations were evaluated for foliar SDS resistance at a naturally infested field site in Decatur, MI during the 2014 and 2015 growing seasons. These populations segregated for SDS resistance, as they were derived from a parent resistant to SDS and a parent susceptible to SDS. The parents and a subset of RILs from each population were genotyped with the SoySNP6K Illumina Infinium BeadChip. Linkage maps unique to each population were constructed using JoinMap ver. 2. Composite interval mapping was done using WinQTLCartographer (ver. 2.5). Six quantitative trait loci (QTL) were identified to be associated with SDS resistance. Three of the QTL associated with SDS resistance were identified across multiple years and/or populations. While biotic factors, such as SDS, work to limit soybean production, soybean quality factors, such as oil quality, can offer new production opportunities. Soybean oil is predominantly composed of five fatty acids: palmitic acid (11%), stearic acid (4%), oleic acid (25%), linoleic acid (52%), and linolenic acid (8%). While there is little variability in most commodity soybean varieties for fatty acid content, soybean breeders have been able to introduce oil quality traits into the soybean germplasm. Oil quality traits for soybean oil include high oleic acid content (>75%), low linolenic acid content (

Book Mendelizing Quantitative Trait Loci that Underlie Resistance to Soybean Sudden Death Syndrome

Download or read book Mendelizing Quantitative Trait Loci that Underlie Resistance to Soybean Sudden Death Syndrome written by Yi-Chen Lee and published by . This book was released on 2016 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean (Glycine max [L.] Merr.) cultivars differ in their resistance to sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Breeding for improve SDS response has proven challenging, possible due to interactions among the 18 known loci for resistance. Four loci for resistance to SDS (cq Rfs to cqRfs3) were found clustered within 20 cM of the rhg1 locus underlying resistance to soybean cyst nematode (SCN) on chromosome 18. Another locus on chromosome 20 (cqRfs5) was reported to interact with this cluster. The aims of this study were to compare the inheritance of resistance to SDS in a near isogenic line (NIL) population that was fixed for resistance to SCN but still segregated at 2 of the 4 loci (cqRfs1 and cqRfs) for resistance to SDS on chromosome 18; to examine the interaction with the locus on chromosome 20; and to identify candidate regions underlying quantitative trait loci (QTL). Used were a near isogenic line population derived from residual heterozygosity in an F5:7 recombinant inbred line EF60 1-40; SDS response data from 2 locations and years; four microsatellite markers and six thousand SNP markers. Polymorphic regions were found from 2,788 to 8,938 Kbp on chromosome 18 and 33,100 to 34,943 Kbp on chromosome 20. Both regions were significantly (0.005 P 0.0001) associated with resistance to SDS. A fine map was constructed that Mendelized the three loci. Substitution maps suggested the two loci on chromosome 18 were actually 3 loci (cqRfs, cq Rfs1 and cqRfs19). Candidate genes for cq Rfs19 were identified in a small region of the genome sequence of soybean. An epistatic interaction was inferred where the allele of loci on chromosome 18 determined the value of the locus on chromosome 20. It was concluded that SDS loci are both complex and interacting which may explain the slow progress in breeding for resistance to SDS.

Book Soybean Sudden Death Syndrome Resistance Genes Mapped by Molecular Markers

Download or read book Soybean Sudden Death Syndrome Resistance Genes Mapped by Molecular Markers written by Nixie Hnetkovsky and published by . This book was released on 1994 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigating Management and Genetics of Soybean Sudden Death Syndrome Pathogens Fusarium Virguliforme and F  Brasiliense

Download or read book Investigating Management and Genetics of Soybean Sudden Death Syndrome Pathogens Fusarium Virguliforme and F Brasiliense written by Mitchell G. Roth and published by . This book was released on 2019 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annual soybean production in the U.S. is worth nearly $40 billion, valued for its oils and protein content. Many pathogens and pests cause significant soybean yield losses each year, but one of the top threats is sudden death syndrome (SDS). At least five fungal species cause soybean SDS globally, but only two have been found in the U.S.; Fusarium virguliforme and F. brasiliense. These soil-borne pathogens infect root tissues and cause root rot, with continued infection leading to foliar interveinal chlorosis, interveinal necrosis, leaf drop, and yield loss. The pathogens are strong saprophytes that can overwinter in soybean and corn residue, so successful management is difficult. Long-term crop rotations and seed treatments with fungicides show some efficacy, but these strategies can be costly for growers. Growers desire genetic resistance to SDS, but no soybean germplasm has shown 100% resistance to SDS to date. Therefore, the overall goals of projects presented in this dissertation were to help improve SDS management and explore the biology and genetics of F. virguliforme and F. brasiliense. To achieve these goals, I developed a risk prediction tool for integration with current SDS management strategies (Chapter 2). This study revealed that pathogen data collected from soil at-planting can be used to accurately model spatial distributions pathogens and model future SDS development and yield loss at a field level. This risk prediction study used a qPCR assay specific for F. virguliforme, but a similar qPCR assay for F. brasiliense did not exist. Therefore, I developed a qPCR assay that can distinguish F. brasiliense from close relatives (Chapter 3). This tool that can be used to generate SDS-prediction models for F. brasiliense and I predict will be valuable in diagnostic labs across the country to distinguish between these two species. To advance our understanding of the biology and genetics of these pathogens, I developed a new protoplast generation and transformation method to generate fluorescent strains of each pathogen (Chapter 4). This chapter is the first to report genetic transformation in F. brasiliense. Furthermore, I used the fluorescent strains to investigate the synergistic role of soil-borne nematodes in SDS (Chapter 5). The interactions between these fungal pathogens and nematodes in vitro show that F. virguliforme and F. brasiliense can colonize immobile nematodes, but suggest that they are not actively vectored into soybean roots by nematodes. The genetic mechanisms of SDS development are poorly understood, so I developed high quality genome sequences for F. virguliforme and F. brasiliense (Chapter 6) and investigated two recognized effector proteins; FvTox1 and FvNIS1 (Chapter 7). The genome assemblies developed here have significantly improved continuity, with improved genome assembly metrics like contig length (N50) and contig number. However, whole-genome alignments between F. virguliforme and F. brasiliense from soybean (Glycine max) or dry bean (Phaseolus vulgaris) did not reveal obvious mobile pathogenicity chromosomes that have been observed in the close relative F. oxysporum. However, these genome resources should facilitate discovery of new fungal effector proteins like FvTox1 and FvNIS1. Interestingly, my results show that FvNIS1 is able to induce a hypersensitive response in tobacco, while FvTox1 is not, suggesting a conserved mechanism between soybean and tobacco for FvNIS1 recognition. Overall, this work provides valuable tools for managing and studying SDS-causing fungi, while also revealing insights into the genetics and genomics of the SDS-causing pathogens F. virguliforme and F. brasiliense.

Book Application of RFLP and RAPD Molecular Technologies to Plant Breeding

Download or read book Application of RFLP and RAPD Molecular Technologies to Plant Breeding written by Andrew Kalinski and published by DIANE Publishing. This book was released on 1994-12 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compilation of 509 sponsored projects on application of RFLP and RAPD molecular technologies to plant breeding. Information on each project includes: title, investigators, organization, location, keywords and percentages. An annotated bibliography of 75 citations is also included.

Book Soybean

    Book Details:
  • Author : Aleksandra Sudarić
  • Publisher : BoD – Books on Demand
  • Release : 2011-04-11
  • ISBN : 9533072407
  • Pages : 530 pages

Download or read book Soybean written by Aleksandra Sudarić and published by BoD – Books on Demand. This book was released on 2011-04-11 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Soybean: Molecular Aspects of Breeding focuses on recent progress in our understanding of the genetics and molecular biology of soybean and provides a broad review of the subject, from genome diversity to transformation and integration of desired genes using current technologies. This book is divided into four parts (Molecular Biology and Biotechnology, Breeding for Abiotic Stress, Breeding for Biotic Stress, Recent Technology) and contains 22 chapters.

Book Genetics and Genomics of Soybean

Download or read book Genetics and Genomics of Soybean written by Gary Stacey and published by Springer Science & Business Media. This book was released on 2008-05-07 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean genomics is of great interest as one of the most economically important crops and a major food source. This book covers recent advances in soybean genome research, including classical, RFLP, SSR, and SNP markers; genomic and cDNA libraries; functional genomics platforms; genetic and physical maps; and gene expression profiles. The book is for researchers and students in plant genetics and genomics, plant biology and pathology, agronomy, and food sciences.

Book DNA Based Markers in Plants

    Book Details:
  • Author : R.L. Phillips
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 9401598150
  • Pages : 508 pages

Download or read book DNA Based Markers in Plants written by R.L. Phillips and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the new techniques described in this volume, a new gene can be placed on the linkage map within only a few days. Leading researchers have updated the earlier edition to include the latest versions of DNA-based marker maps for a variety of important crops.

Book The Soybean Genome

    Book Details:
  • Author : Henry T. Nguyen
  • Publisher : Springer
  • Release : 2017-09-20
  • ISBN : 3319641980
  • Pages : 216 pages

Download or read book The Soybean Genome written by Henry T. Nguyen and published by Springer. This book was released on 2017-09-20 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.

Book Genetic Enhancement in Major Food Legumes

Download or read book Genetic Enhancement in Major Food Legumes written by Kul Bhushan Saxena and published by Springer Nature. This book was released on 2021-09-28 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The protein molecule is the basic building block of every living entity. Its deficiency leads to restricted growth and development of individuals. Globally, such malnutrition is on the rise due to various reasons such as rapid population growth, stagnation of productivity, and ever-rising costs. Millions of people, especially in developing and under-developed countries, suffer from protein malnutrition and the only possible solution is to encourage farmers to grow high-protein food legume crops in their fields for domestic consumption. This, however, could be possible if farmers are provided with new cultivars with high yield, and resistance to major insects, diseases, and key abiotic stresses. The major food legume crops are chickpea, cowpea, common bean, groundnut, lentil, pigeonpea, and soybean. Predominantly, the legume crops are grown under a subsistence level and, therefore, in comparison to cereals and horticultural crops their productivity is low and highly variable. The crop breeders around the globe are engaged in breeding suitable cultivars for harsh and changing environments but success has been limited and not up to needs. With the recent development of new technologies in plant sciences, efforts are being made to help under-privileged farmers through breeding new cultivars which will produce more protein per unit of land area. In this book, the contributors analyze the constraints, review new technologies, and propose a future course of crop breeding programs in seven cold and warm season legume crops.

Book Soybean Breeding

    Book Details:
  • Author : Felipe Lopes da Silva
  • Publisher : Springer
  • Release : 2017-06-10
  • ISBN : 3319574337
  • Pages : 439 pages

Download or read book Soybean Breeding written by Felipe Lopes da Silva and published by Springer. This book was released on 2017-06-10 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written by soybean experts to cluster in a single publication the most relevant and modern topics in soybean breeding. It is geared mainly to students and soybean breeders around the world. It is unique since it presents the challenges and opportunities faced by soybean breeders outside the temperate world.

Book Oilseeds

    Book Details:
  • Author : Chittaranjan Kole
  • Publisher : Springer Science & Business Media
  • Release : 2007-05-05
  • ISBN : 3540343881
  • Pages : 302 pages

Download or read book Oilseeds written by Chittaranjan Kole and published by Springer Science & Business Media. This book was released on 2007-05-05 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the seven-volume series Genome Mapping and Molecular Breeding in Plants, the volume Oilseeds is devoted to oil-producing field crops such as soybeans, oilseed rape, peanuts, sunflowers, Indian mustard, Brassica rapa, black mustard and flax. While the grouping of economic plants is conventionally based on their agricultural purposes, several crops covered in this volume have other uses besides yielding oils. Brassica rapa is also used as a vegetable, the sunflower as an ornamental, and flax as a fibre crop. Black mustard, which is used as a condiment but is genetically close to other Brassica species, is also included here.

Book Genomic Designing for Biotic Stress Resistant Oilseed Crops

Download or read book Genomic Designing for Biotic Stress Resistant Oilseed Crops written by Chittaranjan Kole and published by Springer Nature. This book was released on 2022-03-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in oilseed crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to an oilseed crop in this volume elucidate on different types of biotic stress agents and their effects on and interaction with the crop plants; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress resistant varieties; discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality of yields; and also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.

Book Agronomy Abstracts

Download or read book Agronomy Abstracts written by and published by . This book was released on 1993 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes abstracts of the annual meetings of the American Society of Agronomy; Soil Science Society of America; Crop Science Society of America ( - of its Agronomic Education Division).

Book Genetics  Genomics  and Breeding of Soybean

Download or read book Genetics Genomics and Breeding of Soybean written by Kristin Bilyeu and published by CRC Press. This book was released on 2016-04-19 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The soybean is an economically important leguminous seed crop for feed and food products that is rich in seed protein (about 40 percent) and oil (about 20 percent); it enriches the soil by fixing nitrogen in symbiosis with bacteria. Soybean was domesticated in northeastern China about 2500 BC and subsequently spread to other countries. The enormous