EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gaussian Processes for Machine Learning

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Book Measure Theory  Applications to Stochastic Analysis

Download or read book Measure Theory Applications to Stochastic Analysis written by G. Kallianpur and published by Springer. This book was released on 2006-11-15 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Analysis and Related Topics

Download or read book Stochastic Analysis and Related Topics written by Hayri Korezlioglu and published by Springer. This book was released on 2006-11-14 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.

Book Stochastic Processes and Related Topics

Download or read book Stochastic Processes and Related Topics written by Ioannis Karatzas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last twenty years extensive research has been devoted to a better understanding of the stable and other closely related infinitely divisible mod els. Stamatis Cambanis, a distinguished educator and researcher, played a special leadership role in the development of these research efforts, particu larly related to stable processes from the early seventies until his untimely death in April '95. This commemorative volume consists of a collection of research articles devoted to reviewing the state of the art of this and other rapidly developing research and to explore new directions of research in these fields. The volume is a tribute to the Life and Work of Stamatis by his students, friends, and colleagues whose personal and professional lives he has deeply touched through his generous insights and dedication to his profession. Before the idea of this volume was conceived, two conferences were held in the memory of Stamatis. The first was organized by the University of Athens and the Athens University of Economics and was held in Athens during December 18-19, 1995. The second was a significant part of a Spe cial IMS meeting held at the campus of the University of North Carolina at Chapel Hill during October 17-19, 1996. It is the selfless effort of sev eral people that brought about these conferences. We believe that this is an appropriate place to acknowledge their effort; and on behalf of all the participants, we extend sincere thanks to all these persons.

Book L  vy Processes and Stochastic Calculus

Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fully revised and appended edition of this unique volume, which develops together these two important subjects.

Book Gaussian Process Regression Analysis for Functional Data

Download or read book Gaussian Process Regression Analysis for Functional Data written by Jian Qing Shi and published by CRC Press. This book was released on 2011-07-01 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables. Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dimensional data and variable selection. The remainder of the text explores advanced topics of functional regression analysis, including novel nonparametric statistical methods for curve prediction, curve clustering, functional ANOVA, and functional regression analysis of batch data, repeated curves, and non-Gaussian data. Many flexible models based on Gaussian processes provide efficient ways of model learning, interpreting model structure, and carrying out inference, particularly when dealing with large dimensional functional data. This book shows how to use these Gaussian process regression models in the analysis of functional data. Some MATLAB® and C codes are available on the first author’s website.

Book Backward Stochastic Differential Equations

Download or read book Backward Stochastic Differential Equations written by Jianfeng Zhang and published by Springer. This book was released on 2017-08-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Malliavin Calculus and Stochastic Analysis

Download or read book Malliavin Calculus and Stochastic Analysis written by Frederi Viens and published by Springer Science & Business Media. This book was released on 2013-02-15 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book Markov Processes  Gaussian Processes  and Local Times

Download or read book Markov Processes Gaussian Processes and Local Times written by Michael B. Marcus and published by Cambridge University Press. This book was released on 2006-07-24 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable 2006 synthesis of three main areas in the modern theory of stochastic processes.

Book Stochastic Calculus via Regularizations

Download or read book Stochastic Calculus via Regularizations written by Francesco Russo and published by Springer Nature. This book was released on 2022-11-15 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual Itô and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.

Book Stochastic Calculus

    Book Details:
  • Author : Mircea Grigoriu
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0817682287
  • Pages : 784 pages

Download or read book Stochastic Calculus written by Mircea Grigoriu and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.

Book Stable Non Gaussian Random Processes

Download or read book Stable Non Gaussian Random Processes written by Gennady Samoradnitsky and published by Routledge. This book was released on 2017-11-22 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Revue Roumaine de Math  matiques Pures Et Appliqu  es

Download or read book Revue Roumaine de Math matiques Pures Et Appliqu es written by and published by . This book was released on 1982 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Processes and Filtering Theory

Download or read book Stochastic Processes and Filtering Theory written by Andrew H. Jazwinski and published by Courier Corporation. This book was released on 2013-04-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.