EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gain scheduled Control of a Quadcopter Unmanned Aerial Vehicle

Download or read book Gain scheduled Control of a Quadcopter Unmanned Aerial Vehicle written by Shaun Sawyer and published by . This book was released on 2015 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we develop a gain-scheduled control law for the quadcopter unmanned aerial vehicle (UAV). Techniques from linear control theory are introduced and used to construct adaptive proportional and proportional-integral control laws for use with both state and observer-based output feedback. The controller monitors the yaw angle of the quadcopter and updates a gain matrix as the system evolves through operating points. To demonstrate the effectiveness of the gain-scheduled controller, trajectories involving significant variation in the yaw angle are tracked by the quadcopter, including a helix and Lissajous curve. We consider physical implementation of the controller, and offer suggestions for improvement and future work.

Book Quadcopter

    Book Details:
  • Author : Khaled Mahmoud Abouelsoud
  • Publisher :
  • Release : 2017
  • ISBN :
  • Pages : 284 pages

Download or read book Quadcopter written by Khaled Mahmoud Abouelsoud and published by . This book was released on 2017 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: A quadcopter is a type of unmanned aerial vehicles (UAV). The industry of this type of UAVs is growing exponentially in terms of new technology development and the increase of potential applications that may cover construction inspections, search and rescue, surveillance, aerial photography, monitoring, mapping, etc. A quadcopter is a nonlinear and under-actuated system that introduces complex aerodynamics properties and create challenges which demands the development of new, reliable and effective control techniques to enhance the stability of flight control, plan and track a desired trajectory while minimizing the effect induced by the operational environment and its own sensors. Hence, many control techniques have been developed and researched. Some of such developments work well with the provision of having an accurate mathematical model of the system while other work is associated with a mathematical mode l that can accommodate certain level of wind disturbances and uncertainties related to measurement noise. Moreover, various linear, nonlinear and intelligent control techniques were developed and recognized in the literature. Each one of such control TEchniques has some aspect that excels in under certain conditions. The focus of this thesis is to develop different control techniques that can improve flight control stability, trajectory tracking of a quadcopter and evaluate their performance to select the best suitable control technique that can realize the stated technical flight control requirements. Accordingly, three main techniques have been developed: Standard pid,Fuzzy based control technique that tune PID parameters in real time (FPID) and a hybrid control strategy that consists of three control techniques: (A) FPID with state coordinates transformation (B) State feedback (C) Sliding mode the configuration of the hybrid control strategy consists of two control loops. The inner control loop aims to control the quadcopter’s attitude and altitude while the outer control loopaims to control the quadcopter’s position. Two configurations were used to configure the developed control techniques of the control loops. These configurations are: (A) A sliding mode control is used for the outer loop while for the inner loop two control techniques are used to realize it: a Fuzzy gain scheduled PID with state coordinates transformation and a state feedback control. (B) Fuzzy gain scheduled PID control is used for the outer loop while for the inner loop two control techniques are used to realize it using the same formation as in (a) above. Furthermore, in order to ensure a feasible desired trajectory before tracking it, a trajectory planning algorithm has been developed and tested successfully. Subsequently, a simulation testing environment with friendly graphical User Interface (GUI) has been developed to simulate the quadcopter mathematical model and then to use it as a test bed to validate the developed control techniques with and without the effect of wind disturbance and measurement noise. The quadcopter with each control technique has been tested using the simulation environment under different operational conditions. The results in terms of tracking a desired trajectory shows the robustness of the first configuration of control techniques within the hybrid control strategy under the presence of wind disturbance and measurement noise compared to all the other techniques developed. Then, the second configuration of the control techniques came second in terms of results quality. The third and fourth results in the sequence shown by the fuzzy scheduled PID and the standard PID respectively. Finally, Validating the simulation results on a real system, a quadcopter has been successfully designed, implemented and tested. The developed control techniques were tested using the implemented quadcopter and the results were demonstrated and compared with the simulation results.

Book Position Control of an Unmanned Aerial Vehicle From a Mobile Ground Vehicle

Download or read book Position Control of an Unmanned Aerial Vehicle From a Mobile Ground Vehicle written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : Quadcopters have been developed with controls providing good maneuverability, simple mechanics, and the ability to hover, take-off and land vertically with precision. Due to their small size, they can get close to targets of interest and furthermore stay undetected at lower heights. The main drawbacks of a quadcopter are its high-power consumption and payload restriction, due to which, the number of onboard sensors is constrained. To overcome this limitation, vision-based localization techniques and remote control for the quadcopter are essential areas of current research. The core objective of this research is to develop a closed loop feedback system between an Unmanned Aerial Vehicle (UAV) and a mobile ground vehicle. With this closed loop system, the moving ground vehicle aims to navigate the UAV remotely. The ground vehicle uses a pure pursuit algorithm to traverse a pre-defined path. A Proportional-Integral-Derivative (PID) controller is actualized for position control and attitude stabilization of the UAV. The issue of tracking and 3D pose-estimation of the UAV in light of vision sensing is explored. An estimator to track the states of the UAV, utilizing the images obtained from a single camera mounted on the ground vehicle is developed. This estimator coupled with a Kalman filter determines the UAV's three dimensional position. The relative position of the UAV with the moving ground vehicle and the control output from a joint centralized PD controller is used to navigate the UAV and follow the motion of the ground vehicle in closed loop to avoid time delays. This closed loop system is simulated in MATLAB and Simulink to validate the proposed control and estimation approach. The results obtained validate the control architecture proposed to attain closed loop feedback between the UAV and the mobile ground vehicle.

Book Unmanned Aerial Vehicles  Breakthroughs in Research and Practice

Download or read book Unmanned Aerial Vehicles Breakthroughs in Research and Practice written by Management Association, Information Resources and published by IGI Global. This book was released on 2019-05-03 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: First used in military applications, unmanned aerial vehicles are becoming an integral aspect of modern society and are expanding into the commercial, scientific, recreational, agricultural, and surveillance sectors. With the increasing use of these drones by government officials, business professionals, and civilians, more research is needed to understand their complexity both in design and function. Unmanned Aerial Vehicles: Breakthroughs in Research and Practice is a critical source of academic knowledge on the design, construction, and maintenance of drones, as well as their applications across all aspects of society. Highlighting a range of pertinent topics such as intelligent systems, artificial intelligence, and situation awareness, this publication is an ideal reference source for military consultants, military personnel, business professionals, operation managers, surveillance companies, agriculturalists, policymakers, government officials, law enforcement, IT professionals, academicians, researchers, and graduate-level students.

Book Adaptive Hybrid Control of Quadrotor Drones

Download or read book Adaptive Hybrid Control of Quadrotor Drones written by Nihal Dalwadi and published by Springer Nature. This book was released on 2023-03-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.

Book Model free Control of an Unmanned Aircraft Quadcopter Type System

Download or read book Model free Control of an Unmanned Aircraft Quadcopter Type System written by Christian Monti and published by . This book was released on 2020 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A model-free control algorithm based on the sliding mode control method for unmanned aircraft systems is proposed. The mathematical model of the dynamic system is not required to derive the sliding mode control law for this proposed method. The knowledge of the system’s order, state measurements and control input gain matrix shape and bounds are assumed to derive the control law to track the required trajectories. Lyapunov’s Stability criteria is used to ensure closed-loop asymptotic stability and the error estimate between previous control inputs is used to stabilize the system. A smoothing boundary layer is introduced into the system to eliminate the high frequency chattering of the control input and the higher order states. The [B] matrix used in the model-free algorithm based on the sliding mode control is derived for a quadcopter system. A simulation of a quadcopter is built in Simulink and the model-free control algorithm based on sliding mode control is implemented and a PID control law is used to compare the performance of the model-free control algorithm based off of the RMS (Root-Mean-Square) of the difference between the actual state and the desired state as well as average power usage. The model-free algorithm outperformed the PID controller in all simulations with the quadcopter’s original parameters, double the mass, double the moments of inertia, and double both the mass and the moments of inertia while keep both controllers exactly the same for each simulation."--Abstract.

Book Basics of Unmanned Aerial Vehicles

Download or read book Basics of Unmanned Aerial Vehicles written by Garvit Pandya and published by Notion Press. This book was released on 2021-03-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hey, we all must have noticed a drone flying at an event or maybe some other application. ? Have you ever thought about how a Drone flies? ? What are all the types and sizes of Unmanned Aerial Vehicles? ? What are all the parts and applications of a Drone? Are you interested in getting knowledge of the above questions and more related to them? Get Ready! After reading this book, the next time you see a Drone you will see it from a whole different perspective.

Book Robust Sliding Mode Protocols for Formation of Quadcopter Swarm

Download or read book Robust Sliding Mode Protocols for Formation of Quadcopter Swarm written by Axaykumar Mehta and published by Springer Nature. This book was released on with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Multicopter Design and Control

Download or read book Introduction to Multicopter Design and Control written by Quan Quan and published by Springer. This book was released on 2017-06-23 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first textbook specially on multicopter systems in the world. It provides a comprehensive overview of multicopter systems, rather than focusing on a single method or technique. The fifteen chapters are divided into five parts, covering the topics of multicopter design, modeling, state estimation, control, and decision-making. It differs from other books in the field in three major respects: it is basic and practical, offering self-contained content and presenting hands-on methods; it is comprehensive and systematic; and it is timely. It is also closely related to the autopilot that users often employ today and provides insights into the code employed. As such, it offers a valuable resource for anyone interested in multicopters, including students, teachers, researchers, and engineers. This introductory text is a welcome addition to the literature on multicopter design and control, on which the author is an acknowledged authority. The book is directed to advanced undergraduate and beginning graduate students in aeronautical and control (or electrical) engineering, as well as to multicopter designers and hobbyists. ------- Professor W. Murray Wonham, University of Toronto "This is the single best introduction to multicopter control. Clear, comprehensive and progressing from basic principles to advanced techniques, it's a must read for anyone hoping to learn how to design flying robots." ------- Chris Anderson, 3D Robotics CEO.

Book Autonomous Control of a Quadcopter Via Fuzzy Gain Scheduled PD Control

Download or read book Autonomous Control of a Quadcopter Via Fuzzy Gain Scheduled PD Control written by Saad Sardar and published by . This book was released on 2016-10-04 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the 7th International Conference on Electrical  Control and Computer Engineering   Volume 1

Download or read book Proceedings of the 7th International Conference on Electrical Control and Computer Engineering Volume 1 written by Zainah Md. Zain and published by Springer Nature. This book was released on with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unmanned Aerial Systems

Download or read book Unmanned Aerial Systems written by Anis Koubaa and published by Academic Press. This book was released on 2021-01-21 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. - Covers some of the most innovative approaches to drones - Provides the latest state-of-the-art research and development surrounding unmanned aerial systems - Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area

Book Design and Control of a Vertical Takeoff and Landing Fixed wing Unmanned Aerial Vehicle

Download or read book Design and Control of a Vertical Takeoff and Landing Fixed wing Unmanned Aerial Vehicle written by Yasir Malang and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

Book Design of Unmanned Aerial Systems

Download or read book Design of Unmanned Aerial Systems written by Mohammad H. Sadraey and published by John Wiley & Sons. This book was released on 2020-02-20 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots. Provides design steps and procedures for each major component Presents several fully solved, step-by-step examples at component level Includes numerous UAV figures/images to emphasize the application of the concepts Describes real stories that stress the significance of safety in UAV design Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways Features many end-of-chapter problems for readers to practice Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.

Book Drone Development from Concept to Flight

Download or read book Drone Development from Concept to Flight written by Sumit Sharma and published by Packt Publishing Ltd. This book was released on 2024-04-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn and apply the principles behind building and flying drones using components like BLDC motors and speed controllers, AeroGCS ground software, Ardupilot and PX4 open-source flight stacksalong with examples and best practices Key Features Get to grips with multicopter physics (roll, pitch, and yaw) and 3D dynamics for defining a drone's flight Optimize drone performance with powerful propulsion systems such as BLDS motors, lipo batteries, and ESCs Build a custom survey drone to learn vital aspects of drone assembly, configuration, testing, and maiden flight Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionUnlock opportunities in the growing UAV market where drones are revolutionizing diverse sectors like agriculture, surveying, and the military. Using the vast experience of the author in drone domain, this book provides step-by-step guidance through the complete drone development life cycle, from concept to pilot stage, prototyping, and ultimately, a market-ready product, with domain-specific applications. Starting with an introduction to unmanned systems, principles of drone flight, and it's motion in 3D space, this book shows you how to design a propulsion system tailored to your drone’s needs. You’ll then get hands on with the entire drone assembly process, covering airframe, components, and wiring. Next, you’ll enhance drone connectivity and navigation with communication devices, such as RFD900, Herelink, and H-16 Pro GCS and hardware protocols like I2C, and UART. The book also guides you in using the open-source flight software Ardupilot and PX4, along with firmware architecture and PID tuning for advanced control. Additionally, you’ll go learn about AeroGCS, Mission Planner, and UGCS ground control stations, tips for maiden flight and log analysis for optimizing performance while building a custom survey drone with a 60-min endurance, 10km range, live video feed, and photography options. By the end of this book, you’ll be equipped with all you need to build and fly your own drones and UAVs.What you will learn Explore the design principles for multicopter flight and its physics of motion Grasp terminologies associated with UAV flight systems Implement power trail, communication, and propulsion conceptsin drone design Use IMUs and sensors in flight controllers, and protocols like I2C, SPI, and MAvlink Familiarize yourself with open-source drone flight stacks and ground control station software Apply the control law used in multicopter and the basics of PIDs Delve into modes of flying with remote controllers and analysis of flight logs Who this book is for This book is for beginner-level drone engineers, robotics engineers, hardware and design engineers, and hobbyists who want to enter the drone industry and enhance their knowledge of the physics, mechanics, avionics, and programming of drones, multicopters, and UAVs. While not a prerequisite, a basic understanding of circuits, microcontrollers, and electronic instruments like multimeter, camera, and batteries, along with fundamental concepts in physics and mathematics, will be helpful.

Book Drone

    Book Details:
  • Author : Christan Lee
  • Publisher : Independently Published
  • Release : 2019-06-07
  • ISBN : 9781072586371
  • Pages : 122 pages

Download or read book Drone written by Christan Lee and published by Independently Published. This book was released on 2019-06-07 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drone Notebook Dot grid can be ideal as a guide for practicing handwriting and hand lettering, with the subtle guide allowing you to control the height and width of letters Perfectly sized at 6"x9" 120 page softcover bookbinding flexible Paperback

Book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Download or read book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle written by Moussa Labbadi and published by Springer Nature. This book was released on 2021-09-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.