EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fully Bayesian Learning and Classic Deep Learning

Download or read book Fully Bayesian Learning and Classic Deep Learning written by Elio Abi Younes and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Classic deep learning algorithms are powerful tools for the construction of accurate predictive models for labeled data. However, traditional deep neural networks designed to learning such models are both prone to overfitting and incapable of assessing uncertainty. In contrast, Bayesian learning based upon the emergence of Markov chain Monte Carlo methods and variational inference provides strong ability to express uncertainty in predictions and improve the estimated posterior probability based on new evidence. This work further assesses the efficiency and accuracy of Bayesian inference in complex settings. We provide an in-depth empirical analysis of the methods on both real and synthetic data in the context of regression and image classification. Specifically, we develop a unified Bayesian deep neural network model interleaving Bayesian sampling into deep learning. By rephrasing these learning techniques upon a common theoretical ground casting (1) the application of fully Bayesian learning for deep neural networks rather than pure optimization-based or approximate learning and (2) the most significant regularization technique in neural networks, dropout, as approximate Bayesian inference, we perform a clear comparison proving the efficiency of Bayesian deep learning to maintain state-of-the-art performance compared to existing methods while mitigating the problem of uncertainty in deep learning"--

Book Bayesian Learning for Neural Networks

Download or read book Bayesian Learning for Neural Networks written by Radford M. Neal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Book Deep Learning

    Book Details:
  • Author : Ian Goodfellow
  • Publisher : MIT Press
  • Release : 2016-11-10
  • ISBN : 0262337371
  • Pages : 801 pages

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Book Deep Learning

    Book Details:
  • Author : Manel Martinez-Ramon
  • Publisher : John Wiley & Sons
  • Release : 2024-07-08
  • ISBN : 1119861888
  • Pages : 421 pages

Download or read book Deep Learning written by Manel Martinez-Ramon and published by John Wiley & Sons. This book was released on 2024-07-08 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning tools Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures Practical discussions of recurrent neural networks and non-supervised approaches to deep learning Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Book Enhancing Deep Learning with Bayesian Inference

Download or read book Enhancing Deep Learning with Bayesian Inference written by Matt Benatan and published by Packt Publishing Ltd. This book was released on 2023-06-30 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know. The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more care in how we incorporate model predictions within our applications. Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios. By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems. What you will learn Understand advantages and disadvantages of Bayesian inference and deep learning Understand the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations/approximations Understand the advantages of probabilistic DNNs in production contexts How to implement a variety of BDL methods in Python code How to apply BDL methods to real-world problems Understand how to evaluate BDL methods and choose the best method for a given task Learn how to deal with unexpected data in real-world deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.

Book Variational Bayesian Learning Theory

Download or read book Variational Bayesian Learning Theory written by Shinichi Nakajima and published by Cambridge University Press. This book was released on 2019-07-11 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.

Book Probabilistic Deep Learning

Download or read book Probabilistic Deep Learning written by Oliver Duerr and published by Manning Publications. This book was released on 2020-11-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. Summary Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability teaches the increasingly popular probabilistic approach to deep learning that allows you to refine your results more quickly and accurately without much trial-and-error testing. Emphasizing practical techniques that use the Python-based Tensorflow Probability Framework, you’ll learn to build highly-performant deep learning applications that can reliably handle the noise and uncertainty of real-world data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pulling it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. About the book Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. What's inside Explore maximum likelihood and the statistical basis of deep learning Discover probabilistic models that can indicate possible outcomes Learn to use normalizing flows for modeling and generating complex distributions Use Bayesian neural networks to access the uncertainty in the model About the reader For experienced machine learning developers. About the author Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. Elvis Murina is a data scientist. Table of Contents PART 1 - BASICS OF DEEP LEARNING 1 Introduction to probabilistic deep learning 2 Neural network architectures 3 Principles of curve fitting PART 2 - MAXIMUM LIKELIHOOD APPROACHES FOR PROBABILISTIC DL MODELS 4 Building loss functions with the likelihood approach 5 Probabilistic deep learning models with TensorFlow Probability 6 Probabilistic deep learning models in the wild PART 3 - BAYESIAN APPROACHES FOR PROBABILISTIC DL MODELS 7 Bayesian learning 8 Bayesian neural networks

Book Deep Learning

    Book Details:
  • Author : Manel Martinez-Ramon
  • Publisher : John Wiley & Sons
  • Release : 2024-09-10
  • ISBN : 1119861861
  • Pages : 421 pages

Download or read book Deep Learning written by Manel Martinez-Ramon and published by John Wiley & Sons. This book was released on 2024-09-10 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning tools Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures Practical discussions of recurrent neural networks and non-supervised approaches to deep learning Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Book Variational Methods for Machine Learning with Applications to Deep Networks

Download or read book Variational Methods for Machine Learning with Applications to Deep Networks written by Lucas Pinheiro Cinelli and published by Springer Nature. This book was released on 2021-05-10 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Book Machine and Deep Learning Algorithms and Applications

Download or read book Machine and Deep Learning Algorithms and Applications written by Uday Shankar and published by Springer Nature. This book was released on 2022-05-31 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning to address a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts.

Book Learning Bayesian Models with R

Download or read book Learning Bayesian Models with R written by Dr. Hari M. Koduvely and published by Packt Publishing Ltd. This book was released on 2015-10-28 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

Book The Theory of Perfect Learning

Download or read book The Theory of Perfect Learning written by Nonvikan Karl-Augustt Alahassa and published by Nonvikan Karl-Augustt Alahassa. This book was released on 2021-08-17 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: The perfect learning exists. We mean a learning model that can be generalized, and moreover, that can always fit perfectly the test data, as well as the training data. We have performed in this thesis many experiments that validate this concept in many ways. The tools are given through the chapters that contain our developments. The classical Multilayer Feedforward model has been re-considered and a novel $N_k$-architecture is proposed to fit any multivariate regression task. This model can easily be augmented to thousands of possible layers without loss of predictive power, and has the potential to overcome our difficulties simultaneously in building a model that has a good fit on the test data, and don't overfit. His hyper-parameters, the learning rate, the batch size, the number of training times (epochs), the size of each layer, the number of hidden layers, all can be chosen experimentally with cross-validation methods. There is a great advantage to build a more powerful model using mixture models properties. They can self-classify many high dimensional data in a few numbers of mixture components. This is also the case of the Shallow Gibbs Network model that we built as a Random Gibbs Network Forest to reach the performance of the Multilayer feedforward Neural Network in a few numbers of parameters, and fewer backpropagation iterations. To make it happens, we propose a novel optimization framework for our Bayesian Shallow Network, called the {Double Backpropagation Scheme} (DBS) that can also fit perfectly the data with appropriate learning rate, and which is convergent and universally applicable to any Bayesian neural network problem. The contribution of this model is broad. First, it integrates all the advantages of the Potts Model, which is a very rich random partitions model, that we have also modified to propose its Complete Shrinkage version using agglomerative clustering techniques. The model takes also an advantage of Gibbs Fields for its weights precision matrix structure, mainly through Markov Random Fields, and even has five (5) variants structures at the end: the Full-Gibbs, the Sparse-Gibbs, the Between layer Sparse Gibbs which is the B-Sparse Gibbs in a short, the Compound Symmetry Gibbs (CS-Gibbs in short), and the Sparse Compound Symmetry Gibbs (Sparse-CS-Gibbs) model. The Full-Gibbs is mainly to remind fully-connected models, and the other structures are useful to show how the model can be reduced in terms of complexity with sparsity and parsimony. All those models have been experimented, and the results arouse interest in those structures, in a sense that different structures help to reach different results in terms of Mean Squared Error (MSE) and Relative Root Mean Squared Error (RRMSE). For the Shallow Gibbs Network model, we have found the perfect learning framework : it is the $(l_1, \boldsymbol{\zeta}, \epsilon_{dbs})-\textbf{DBS}$ configuration, which is a combination of the \emph{Universal Approximation Theorem}, and the DBS optimization, coupled with the (\emph{dist})-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate Interpolation (\emph{dist}-NN-(h)-TS-PMI) model [which in turn is a combination of the research of the Nearest Neighborhood for a good Train-Test association, the Taylor Approximation Theorem, and finally the Multivariate Interpolation Method]. It indicates that, with an appropriate number $l_1$ of neurons on the hidden layer, an optimal number $\zeta$ of DBS updates, an optimal DBS learnnig rate $\epsilon_{dbs}$, an optimal distance \emph{dist}$_{opt}$ in the research of the nearest neighbor in the training dataset for each test data $x_i^{\mbox{test}}$, an optimal order $h_{opt}$ of the Taylor approximation for the Perfect Multivariate Interpolation (\emph{dist}-NN-(h)-TS-PMI) model once the {\bfseries DBS} has overfitted the training dataset, the train and the test error converge to zero (0). As the Potts Models and many random Partitions are based on a similarity measure, we open the door to find \emph{sufficient} invariants descriptors in any recognition problem for complex objects such as image; using \emph{metric} learning and invariance descriptor tools, to always reach 100\% accuracy. This is also possible with invariant networks that are also universal approximators. Our work closes the gap between the theory and the practice in artificial intelligence, in a sense that it confirms that it is possible to learn with very small error allowed.

Book A Greater Foundation for Machine Learning Engineering

Download or read book A Greater Foundation for Machine Learning Engineering written by Dr. Ganapathi Pulipaka and published by Xlibris Corporation. This book was released on 2021-10-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research scholarly illustrated book has more than 250 illustrations. The simple models of supervised machine learning with Gaussian Naïve Bayes, Naïve Bayes, decision trees, classification rule learners, linear regression, logistic regression, local polynomial regression, regression trees, model trees, K-nearest neighbors, and support vector machines lay a more excellent foundation for statistics. The author of the book Dr. Ganapathi Pulipaka, a top influencer of machine learning in the US, has created this as a reference book for universities. This book contains an incredible foundation for machine learning and engineering beyond a compact manual. The author goes to extraordinary lengths to make academic machine learning and deep learning literature comprehensible to create a new body of knowledge. The book aims at readership from university students, enterprises, data science beginners, machine learning and deep learning engineers at scale for high-performance computing environments. A Greater Foundation of Machine Learning Engineering covers a broad range of classical linear algebra and calculus with program implementations in PyTorch, TensorFlow, R, and Python with in-depth coverage. The author does not hesitate to go into math equations for each algorithm at length that usually many foundational machine learning books lack leveraging the JupyterLab environment. Newcomers can leverage the book from University or people from all walks of data science or software lives to the advanced practitioners of machine learning and deep learning. Though the book title suggests machine learning, there are several implementations of deep learning algorithms, including deep reinforcement learning. The book's mission is to help build a strong foundation for machine learning and deep learning engineers with all the algorithms, processors to train and deploy into production for enterprise-wide machine learning implementations. This book also introduces all the concepts of natural language processing required for machine learning algorithms in Python. The book covers Bayesian statistics without assuming high-level mathematics or statistics experience from the readers. It delivers the core concepts and implementations required with R code with open datasets. The book also covers unsupervised machine learning algorithms with association rules and k-means clustering, metal-learning algorithms, bagging, boosting, random forests, and ensemble methods. The book delves into the origins of deep learning in a scholarly way covering neural networks, restricted Boltzmann machines, deep belief networks, autoencoders, deep Boltzmann machines, LSTM, and natural language processing techniques with deep learning algorithms and math equations. It leverages the NLTK library of Python with PyTorch, Python, and TensorFlow's installation steps, then demonstrates how to build neural networks with TensorFlow. Deploying machine learning algorithms require a blend of cloud computing platforms, SQL databases, and NoSQL databases. Any data scientist with a statistics background that looks to transition into a machine learning engineer role requires an in-depth understanding of machine learning project implementations on Amazon, Google, or Microsoft Azure cloud computing platforms. The book provides real-world client projects for understanding the complete implementation of machine learning algorithms. This book is a marvel that does not leave any application of machine learning and deep learning algorithms. It sets a more excellent foundation for newcomers and expands the horizons for experienced deep learning practitioners. It is almost inevitable that there will be a series of more advanced algorithms follow-up books from the author in some shape or form after setting such a perfect foundation for machine learning engineering.

Book Machine Learning

    Book Details:
  • Author : Kevin P. Murphy
  • Publisher : MIT Press
  • Release : 2012-08-24
  • ISBN : 0262018020
  • Pages : 1102 pages

Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-08-24 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Book Probabilistic Machine Learning

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Book Pattern Recognition and Machine Learning

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Book Understanding Machine Learning

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.