EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fractures in Geothermal Reservoirs

Download or read book Fractures in Geothermal Reservoirs written by Geothermal Resources Council and published by . This book was released on 1982 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fractures in Geothermal Reservoirs

Download or read book Fractures in Geothermal Reservoirs written by Geothermal Resources Council and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fracture Characterization in Geothermal Reservoirs Using Time lapse Electric Potential Data

Download or read book Fracture Characterization in Geothermal Reservoirs Using Time lapse Electric Potential Data written by Lilja Magnúsdóttir and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The configuration of fractures in a geothermal reservoir is central to the performance of the system. The interconnected fractures control the heat and mass transport in the reservoir and if the fluid reaches production wells before it is fully heated, unfavorable effects on energy production may result due to decreasing fluid enthalpies. Consequently, inappropriate placing of injection or production wells can lead to premature thermal breakthrough. Thus, fracture characterization in geothermal reservoirs is an important task in order to design the recovery strategy appropriately and increase the overall efficiency of the power production. This is true both in naturally fractured geothermal systems as well as in Enhanced Geothermal Systems (EGS) with man-made fractures produced by hydraulic stimulation. In this study, the aim was to estimate fracture connectivity in geothermal reservoirs using a conductive fluid injection and an inversion of time-lapse electric potential data. Discrete fracture networks were modeled and a flow simulator was used first to simulate the flow of a conductive tracer through the reservoirs. Then, the simulator was applied to solve the electric fields at each time step by utilizing the analogy between Ohm's law and Darcy's law. The electric potential difference between well-pairs drops as a conductive fluid fills fracture paths from the injector towards the producer. Therefore, the time-lapse electric potential data can be representative of the connectivity of the fracture network. Flow and electric simulations were performed on models of various fracture networks and inverse modeling was used to match reservoir models to other fracture networks in a library of networks by comparing the time-histories of the electric potential. Two fracture characterization indices were investigated for describing the character of the fractured reservoirs; the fractional connected area and the spatial fractal dimension. In most cases, the electrical potential approach was used successfully to estimate both the fractional connected area of the reservoirs and the spatial fractal dimension. The locations of the linked fracture sets were also predicted correctly. Next, the electric method was compared to using only the simple tracer return curves at the producers in the inverse analysis. The study showed that the fracture characterization indices were estimated somewhat better using the electric approach. The locations of connected areas in the predicted network were also in many cases incorrect when only the tracer return curves were used. The use of the electric approach to predict thermal return was investigated and compared to using just the simple tracer return curves. The electric approach predicted the thermal return curves relatively accurately. However, in some cases the tracer return gave a better estimation of the thermal behavior. The electric measurements are affected by both the time it takes for the conductive tracer to reach the production well, as well as the overall location of the connected areas. When only the tracer return curves are used in the inverse analysis, only the concentration of tracer at the producer is measured but there is a good correlation between the tracer breakthrough time and the thermal breakthrough times. Thus, the tracer return curves can predict the thermal return accurately but the overall location of fractures might not be predicted correctly. The electric data and the tracer return data were also used together in an inverse analysis to predict the thermal returns. The results were in some cases somewhat better than using only the tracer return curves or only the electric data. A different injection scheme was also tested for both approaches. The electric data characterized the overall fracture network better than the tracer return curves so when the well pattern was changed from what was used during the tracer and electric measurements, the electric approach predicted the new thermal return better. In addition, the thermal return was predicted considerably better using the electric approach when measurements over a shorter period of time were used in the inverse analysis. In addition to characterizing the fracture distribution better, the electric approach can give information about the conductive fluid flowing through the fracture network even before it has reached the production wells.

Book Geothermal Energy in Europe

Download or read book Geothermal Energy in Europe written by J. C. Bresee and published by CRC Press. This book was released on 1992 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The report of a research project in eastern France, a pilot study for a much larger effort to determine whether geothermal energy resources can be developed in areas without natural geothermal reservoirs, which includes a good deal of industrial northern Europe. The idea is to drill a hole deep enough to hit hot rock, then circulate high-pressure water between the hot rock and heat exchangers at the surface; it was developed at Los Alamos National Laboratories. Includes a half-page subject index. Annotation copyright by Book News, Inc., Portland, OR

Book Geothermal Reservoir Engineering

Download or read book Geothermal Reservoir Engineering written by Malcolm Alister Grant and published by Academic Press. This book was released on 2011-04-01 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The book focuses particularly on the evaluation of potential sites and provides detailed guidance on the field management of the power plants built on them. With over 100 pages of new material informed by the breakthroughs of the last 25 years, Geothermal Reservoir Engineering remains the only training tool and professional reference dedicated to advising both new and experienced geothermal reservoir engineers. - The only resource available to help geothermal professionals make smart choices in field site selection and reservoir management - Practical focus eschews theory and basics- getting right to the heart of the important issues encountered in the field - Updates include coverage of advances in EGS (enhanced geothermal systems), well stimulation, well modeling, extensive field histories and preparing data for reservoir simulation - Case studies provide cautionary tales and best practices that can only be imparted by a seasoned expert

Book The Induction and Growth of Fractures in Hot Rock

Download or read book The Induction and Growth of Fractures in Hot Rock written by R. Lee Aamodt and published by . This book was released on 1972 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytic Element Modeling of Groundwater Flow

Download or read book Analytic Element Modeling of Groundwater Flow written by H. M. Haitjema and published by Elsevier. This book was released on 1995-09-20 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling has become an essential tool for the groundwater hydrologist. Where field data is limited, the analytic element method (AEM) is rapidly becoming the modeling method of choice, especially given the availability of affordable modeling software. Analytic Element Modeling of Groundwater Flow provides all the basics necessary to approach AEM successfully, including a presentation of fundamental concepts and a thorough introduction to Dupuit-Forchheimerflow. This book is unique in its emphasis on the actual use of analytic element models. Real-world examples complement material presented in the text. An educational version of the analytic element program GFLOW is included to allow the reader to reproduce the various solutions to groundwater flow problems discussed in the text. Researchers and graduate students in groundwater hydrology, geology, andengineering will find this book an indispensable resource. * * Provides a fundamental introduction to the use of the analytic element method. * Offers a step-by-step approach to groundwater flow modeling. * Includes an educational version of the GFLOW modeling software.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Injection Into a Fractured Geothermal Reservoir

Download or read book Injection Into a Fractured Geothermal Reservoir written by and published by . This book was released on 1980 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100°C water is injected into a 300°C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Book Injection Into a Fractured Geothermal Reservoir

Download or read book Injection Into a Fractured Geothermal Reservoir written by Gudmundur S. Bodvarsson and published by . This book was released on 1980 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fracture Network Modeling of a Hot Dry Rock Geothermal Reservoir

Download or read book Fracture Network Modeling of a Hot Dry Rock Geothermal Reservoir written by and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Book Thermo hydro mechanical Analysis of Fractures and Wellbores in Petroleum Geothermal Reservoirs

Download or read book Thermo hydro mechanical Analysis of Fractures and Wellbores in Petroleum Geothermal Reservoirs written by Mohammadreza Safariforoshani and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic displacement discontinuity and stress discontinuity methods are elaborated for infinite media. Furthermore, injection/production-induced mass and heat transport inside fractures are studied by coupling the displacement discontinuity method with the finite element method. The resulting method is then used to simulate problems of interest in wellbores and fractures for related to drilling and stimulation. In the examination of fracture deformation, the nonlinear behavior of discontinuities and the change in status from joint (hydraulically open, mechanically closed) to hydraulic fracture (hydraulically open, mechanically open) are taken into account. Examples are presented to highlight the versatility of the method and the role of thermal and hydraulic effects, three-dimensionality, hydraulic/natural fracture deformation, and induced micro earthquakes. Specifically, injection/extraction operations in enhanced geothermal reservoirs and hydraulic/thermal stimulation of fractured reservoirs are studied and analyzed with reference to induced seismicity. In addition, the fictitious stress method is used to study three-dimensional wellbore stresses in the presence of a weakness plane. It is shown that the coupling of hydro-thermo-mechanical processes plays a very important role in low-permeability reservoirs and should be considered when predicting the behavior of fractures and wellbores. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151272

Book Hydraulic fracturing and geothermal energy

Download or read book Hydraulic fracturing and geothermal energy written by S. Nemat-Nassar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing has been and continues to be a major techno logical tool in oil and gas recovery, nuclear and other waste disposal, mining and particularly in-situ coal gasification, and, more recently, in geothermal heat recovery, particularly extracting heat from hot dry rock masses. The understanding of the fracture process under the ac tion of pressurized fluid at various temperatures is of fundamental scientific importance, which requires an adequate description of thermomechanical properties of subsurface rock, fluid-solid interaction effects, as well as degradation of the host rock due to temperature gradients introduced by heat extraction. Considerable progress has been made over the past several years in laboratory experiments, analytical and numerical modeling, and in-situ field studies in various aspects of hydraulic fracturing and geothermal energy extraction, by researchers in the United States and Japan and also elsewhere. However, the results have been scattered throughout the literature. Therefore, the time seemed ripe for bringing together selected researchers from the two countries, as well as observers from other countries, in order to survey the state of the art, exchange scientific information, and establish closer collaboration for further, better coordinated scientific effort in this important area of research and exploration.

Book Effects of Non condensible Gases on Fluid Recovery in Fracturedgeothermal Reservoirs

Download or read book Effects of Non condensible Gases on Fluid Recovery in Fracturedgeothermal Reservoirs written by and published by . This book was released on 1986 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulations are performed in order to investigate the effects of noncondensible gases, (CO2) on fluid recovery and matrix depletion in fractured geothermal reservoirs. The model used is that of a well producing at a constant bottomhole pressure from a two-phase fractured reservoir. The results obtained have revealed a complex fracture-matrix interaction due to the thermodynamics of H2O-CO2 mixtures. Although the matrix initially contributes fluids (liquid and gas) to the fractures, later on, the flow directions reverse and the fractures backflow fluids into the matrix. The amount of backflow depends primarily upon the flowing gas saturation in the fractures; the lower the flowing gas saturation in the fractures the more backflow. It is shown that the recoverable fluid reserves depend strongly on the amount of CO2 present in the reservoir system.

Book Parallel Fractures Model for Tracer Flow Through Geothermal Reservoirs   Preliminary Results

Download or read book Parallel Fractures Model for Tracer Flow Through Geothermal Reservoirs Preliminary Results written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A parallel fractures model, having equal width and spacing, has been developed to study the flow of tracers through naturally fractured geothermal reservoirs. The model is capable of handling either a single fracture or a system of two or more parallel fractures, interacting with associated porous bodies. The reservoir is treated as being composed of two regions a mobile region where diffusion and convection are allowed and a stagnant or immobile region where only diffusion and adsorption are allowed. Both regions are interconnected by means of a very thin fluid film contained within the immobile region which controls the fluid and mass transfer between both regions. The mobile region represents the system of fractures, where tracer is free to flow reaching high velocities, whereas non-homogeneities of the reservoir rock, such as microfractures and dead-end fractures are represented by means of an equivalent porous body where fluid remains immobile. The boundary-value problem for the system is stated and its solution into Laplace's space is presented. Numerical inversion of this solution was performed by means of the Stehfest algorithm. Preliminary results showing results obtained from the proposed model are included. Further work is underway to apply the model for interpretation of actual tracer flow field data. 4 figs., 1 tab., 11 refs.

Book Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks

Download or read book Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

Book Modeling Flow in Fractured Geologic Media

Download or read book Modeling Flow in Fractured Geologic Media written by Tawfik Rajeh and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractures constitute major pathways for flow and transport in fractured porous rocks. These types of rocks are encountered in a wide range of applications like for example gas and petroleum engineering, CO2 sequestration and geothermal energy extraction. The present thesis presents a framework to analyze geometrical, topological and hydraulic properties of 3D planar fracture networks with focus on upscaling these properties to obtain an equivalent continuum, in view of application to simulations of geothermal reservoir exploitation. The description of fractures and discrete fracture networks (DFN), their statistical properties and their generation procedures are studied. As permeability plays a key role in flow and transport in fractured porous rocks, we have developed a fast upscaling approach for determining the equivalent permeability tensor of 3D fractured porous media. This new approach is based on the superposition principle improved by empirical connectivity factors in order to take into account the connectivity and percolation properties of the fracture network. Although efficient in predicting permeability, the proposed method presents a major limitation due mainly to the difficulty in assessing the percolation and connectivity properties of the network. To overcome these limitations and for further insightful analyses of DFN composed of planar fractures, an original framework of geometrical and topological analysis of 3D fracture networks has been developed. In this framework, all the geometrical and topological attributes (intersections, areas, trace lengths, clusters, percolating clusters, etc.) of a DFN are explicitly calculated by a set of algorithms. These algorithms are validated in detail by comparison to commercial softwares, and their computational efficiency is highlighted. The final purpose of this framework is to give a graph representation of the DFN. Given the newly developed tools, our capabilities of treating fracture networks have drastically increased. Hence, using a graph representation of the DFN, new approaches have been developed concerning two main issues with fracture networks: (i) percolation, (ii) clustering phenomenon (i.e., the formation of clusters by groups of fractures) and (iii) permeability upscaling. A large scale thermo-hydraulic simulator has therefore been developed with the finite volume open source code “OpenFoam”. The purpose is to apply the upscaling techniques to large scale reservoir configurations with a full coupling with heat transfer. A typical example of injectionproduction wells in a 3D geothermal reservoir is presented, and other cases are being developed within the GEOTREF project ( www.geotref.com ).