EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Foundations of Geometry and the Non Euclidean Plane

Download or read book The Foundations of Geometry and the Non Euclidean Plane written by G.E. Martin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

Book Euclidean and Non euclidean Geometries

Download or read book Euclidean and Non euclidean Geometries written by Maria Helena Noronha and published by . This book was released on 2002 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a self-contained treatment of classical Euclidean geometry through both axiomatic and analytic methods. Concise and well organized, it prompts readers to prove a theorem yet provides them with a framework for doing so. Chapter topics cover neutral geometry, Euclidean plane geometry, geometric transformations, Euclidean 3-space, Euclidean n-space; perimeter, area and volume; spherical geometry; hyperbolic geometry; models for plane geometries; and the hyperbolic metric.

Book The Foundations of Geometry

Download or read book The Foundations of Geometry written by David Hilbert and published by Read Books Ltd. This book was released on 2015-05-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

Book Euclidean and Non Euclidean Geometry International Student Edition

Download or read book Euclidean and Non Euclidean Geometry International Student Edition written by Patrick J. Ryan and published by Cambridge University Press. This book was released on 2009-09-04 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.

Book Euclidean and Non Euclidean Geometries

Download or read book Euclidean and Non Euclidean Geometries written by Marvin J. Greenberg and published by Macmillan. This book was released on 1993-07-15 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text provides overview of both classic and hyperbolic geometries, placing the work of key mathematicians/ philosophers in historical context. Coverage includes geometric transformations, models of the hyperbolic planes, and pseudospheres.

Book The Foundations of Geometry  Works on Non Euclidean Geometry

Download or read book The Foundations of Geometry Works on Non Euclidean Geometry written by Nikolai I. Lobachevsky and published by . This book was released on 2019-10-02 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neither general relativity (which revealed that gravity is merely manifestation of the non-Euclidean geometry of spacetime) nor modern cosmology would have been possible without the almost simultaneous and independent discovery of non-Euclidean geometry in the 19th century by three great mathematicians - Nikolai Ivanovich Lobachevsky, János Bolyai and Carl Friedrich Gauss (whose ideas were later further developed by Georg Friedrich Bernhard Riemann).This volume contains three works by Lobachevsky on the foundations of geometry and non-Euclidean geometry: "Geometry", "Geometrical investigations on the theory of parallel lines" and "Pangeometry". It will be of interest not only to experts and students in mathematics, physics, history and philosophy of science, but also to anyone who is not intimidated by the magnitude of one of the greatest discoveries of our civilization and would attempt to follow (and learn from) Lobachevsky's line of thought, helpfully illustrated by over 130 figures, that led him to the discovery.

Book Foundations of Euclidean and Non Euclidean Geometry

Download or read book Foundations of Euclidean and Non Euclidean Geometry written by Ellery B. Golos and published by . This book was released on 1968 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometry  A Comprehensive Course

Download or read book Geometry A Comprehensive Course written by Dan Pedoe and published by Courier Corporation. This book was released on 2013-04-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.

Book Foundations of Hyperbolic Manifolds

Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Book A Gyrovector Space Approach to Hyperbolic Geometry

Download or read book A Gyrovector Space Approach to Hyperbolic Geometry written by Abraham Ungar and published by Morgan & Claypool Publishers. This book was released on 2009-03-08 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry

Book A History of Non Euclidean Geometry

Download or read book A History of Non Euclidean Geometry written by Boris A. Rosenfeld and published by Springer Science & Business Media. This book was released on 2012-09-08 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.

Book A Simple Non Euclidean Geometry and Its Physical Basis

Download or read book A Simple Non Euclidean Geometry and Its Physical Basis written by I.M. Yaglom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.

Book Geometry  Euclid and Beyond

Download or read book Geometry Euclid and Beyond written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.

Book Ideas of Space

    Book Details:
  • Author : Jeremy Gray
  • Publisher : Oxford University Press on Demand
  • Release : 1989
  • ISBN : 9780198539353
  • Pages : 242 pages

Download or read book Ideas of Space written by Jeremy Gray and published by Oxford University Press on Demand. This book was released on 1989 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history of the development of Euclidean, non-Euclidean, and relativistic ideas of the shape of the universe, is presented in this lively account by Jeremy Gray. The parallel postulate of Euclidean geometry occupies a unique position in the history of mathematics. In this book, Jeremy Gray reviews the failure of classical attempts to prove the postulate and then proceeds to show how the work of Gauss, Lobachevskii, and Bolyai, laid the foundations ofmodern differential geometry, by constructing geometries in which the parallel postulate fails. These investigations in turn enabled the formulation of Einstein's theories of special and general relativity, which today form the basis of our conception of the universe. The author has made every attempt to keep the pre-requisites to a bare minimum. This immensely readable account, contains historical and mathematical material which make it suitable for undergraduate students in the history of science and mathematics. For the second edition, the author has taken the opportunity to update much of the material, and to add a chapter on the emerging story of the Arabic contribution to this fascinating aspect of the history of mathematics.

Book Foundations of Geometry

Download or read book Foundations of Geometry written by C. R. Wylie and published by Courier Corporation. This book was released on 2009-05-21 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains geometric theories and shows many examples.

Book Introduction to Non Euclidean Geometry

Download or read book Introduction to Non Euclidean Geometry written by Harold E. Wolfe and published by Courier Corporation. This book was released on 2012-01-01 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first college-level texts for elementary courses in non-Euclidean geometry, this volumeis geared toward students familiar with calculus. Topics include the fifth postulate, hyperbolicplane geometry and trigonometry, and elliptic plane geometry and trigonometry. Extensiveappendixes offer background information on Euclidean geometry, and numerous exercisesappear throughout the text.Reprint of the Holt, Rinehart & Winston, Inc., New York, 1945 edition

Book Euclidean Geometry in Mathematical Olympiads

Download or read book Euclidean Geometry in Mathematical Olympiads written by Evan Chen and published by American Mathematical Soc.. This book was released on 2021-08-23 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.