Download or read book Flows on Compact Surfaces written by Nelson G. Markley and published by Springer Nature. This book was released on 2023-07-18 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a uniquely accessible introduction to flows on compact surfaces, filling a gap in the existing literature. The book can be used for a single semester course and/or for independent study. It demonstrates that covering spaces provide a suitable and modern setting for studying the structure of flows on compact surfaces. The thoughtful treatment of flows on surfaces uses topology (especially covering spaces), the classification of compact surfaces, and Euclidean and hyperbolic rigid motions to establish structural theorems that describe flows on surfaces generally. Several of the topics from dynamical systems that appear in this book (e.g., fixed points, invariant sets, orbits, almost periodic points) also appear in the many subareas of dynamical systems. The book successfully presents the reader with a self-contained introduction to dynamical systems or an expansion of one's existing knowledge of the field. Prerequisites include completion of a graduate-level topology course; a background in dynamical systems is not assumed.
Download or read book Flows on 2 dimensional Manifolds written by Igor Nikolaev and published by Springer. This book was released on 2006-11-14 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-evolution in low-dimensional topological spaces is a subject of puzzling vitality. This book is a state-of-the-art account, covering classical and new results. The volume comprises Poincaré-Bendixson, local and Morse-Smale theories, as well as a carefully written chapter on the invariants of surface flows. Of particular interest are chapters on the Anosov-Weil problem, C*-algebras and non-compact surfaces. The book invites graduate students and non-specialists to a fascinating realm of research. It is a valuable source of reference to the specialists.
Download or read book A Guide to the Classification Theorem for Compact Surfaces written by Jean Gallier and published by Springer Science & Business Media. This book was released on 2013-02-05 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
Download or read book Foliations on Surfaces written by Igor Nikolaev and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive, encyclopedic approach to the subject of foliations, one of the major concepts of modern geometry and topology. It addresses graduate students and researchers and serves as a reference book for experts in the field.
Download or read book Aeroacoustics of Low Mach Number Flows written by Stewart Glegg and published by Academic Press. This book was released on 2017-02-15 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement provides a comprehensive treatment of sound radiation from subsonic flow over moving surfaces, which is the most widespread cause of flow noise in engineering systems. This includes fan noise, rotor noise, wind turbine noise, boundary layer noise, and aircraft noise. Beginning with fluid dynamics, the fundamental equations of aeroacoustics are derived and the key methods of solution are explained, focusing both on the necessary mathematics and physics. Fundamentals of turbulence and turbulent flows, experimental methods and numerous applications are also covered. The book is an ideal source of information on aeroacoustics for researchers and graduate students in engineering, physics, or applied math, as well as for engineers working in this field. Supplementary material for this book is provided by the authors on the website www.aeroacoustics.net. The website provides educational content designed to help students and researchers in understanding some of the principles and applications of aeroacoustics, and includes example problems, data, sample codes, course plans and errata. The website is continuously being reviewed and added to. Explains the key theoretical tools of aeroacoustics, from Lighthill’s analogy to the Ffowcs Williams and Hawkings equation Provides detailed coverage of sound from lifting surfaces, boundary layers, rotating blades, ducted fans and more Presents the fundamentals of sound measurement and aeroacoustic wind tunnel testing
Download or read book Advances in Two Phase Flow and Heat Transfer written by Sadik Kakaç and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades, two-phase flow and heat transfer problems associated with two-phase phenomena have been a challenge to many investigators. Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide vari ety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. The Horkshop was attended by more than 50 leading scientists and practicing engineers who work actively on two-phase flow and heat transfer research and applications in dif ferent sectors (academia, government, industry) of member countries of NATO. Some scientific leaders and experts on the subject matter from the non-NATO countries were also invited. They convened to discuss the state-of-the-art in two-phase flow and heat transfer and formulated recommendations for future research directions. To achieve these goals, invited key papers and a limited number of contributions were presented and discussed. The specific aspects of the subject were treated in depth in the panel sessions, and the unresolved problems identified. Suitable as a practical reference, these volumes incorporate a systematic approach to two-phase flow analysis.
Download or read book Generalized Ricci Flow written by Mario Garcia-Fernandez and published by American Mathematical Soc.. This book was released on 2021-04-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The generalized Ricci flow is a geometric evolution equation which has recently emerged from investigations into mathematical physics, Hitchin's generalized geometry program, and complex geometry. This book gives an introduction to this new area, discusses recent developments, and formulates open questions and conjectures for future study. The text begins with an introduction to fundamental aspects of generalized Riemannian, complex, and Kähler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as ‘canonical metrics’ in generalized Riemannian and complex geometry. The book then introduces generalized Ricci flow as a tool for constructing such metrics and proves extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kähler-Ricci flow, leading to global convergence results and applications to complex geometry. Finally, the book gives a purely mathematical introduction to the physical idea of T-duality and discusses its relationship to generalized Ricci flow. The book is suitable for graduate students and researchers with a background in Riemannian and complex geometry who are interested in the theory of geometric evolution equations.
Download or read book Geometric and Ergodic Aspects of Group Actions written by S. G. Dani and published by Springer Nature. This book was released on 2020-01-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers papers on recent advances in the ergodic theory of group actions on homogeneous spaces and on geometrically finite hyperbolic manifolds presented at the workshop “Geometric and Ergodic Aspects of Group Actions,” organized by the Tata Institute of Fundamental Research, Mumbai, India, in 2018. Written by eminent scientists, and providing clear, detailed accounts of various topics at the interface of ergodic theory, the theory of homogeneous dynamics, and the geometry of hyperbolic surfaces, the book is a valuable resource for researchers and advanced graduate students in mathematics.
Download or read book Extrinsic Geometric Flows written by Ben Andrews and published by American Mathematical Society. This book was released on 2022-03-02 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Download or read book Partially Hyperbolic Dynamics Laminations and Teichmuller Flow written by Giovanni Forni and published by American Mathematical Soc.. This book was released on with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects a set of contributions by participants of the Workshop Partially hyperbolic dynamics, laminations, and Teichmuller flow held at the Fields Institute in Toronto in January 2006. The Workshop brought together several leading experts in two very active fields of contemporary dynamical systems theory: partially hyperbolic dynamics and Teichmuller dynamics. They are unified by ideas coming from the theory of laminations and foliations, dynamical hyperbolicity, and ergodic theory. These are the main themes of the current volume. The volume contains both surveys and research papers on non-uniform and partial hyperbolicity, on dominated splitting and beyond (in Part I), Teichmuller dynamics with applications to interval exchange transformations and on the topology of moduli spaces of quadratic differentials (in Part II), foliations and laminations and other miscellaneous papers (in Part III). Taken together these papers provide a snapshot of the state of the art in some of the most active topics at the crossroads between dynamical systems, smooth ergodic theory, geometry and topology, suitable for advanced graduate students and researchers.Non-specialists will find the extensive, in-depth surveys especially useful.
Download or read book Convective Flow Boiling written by John C. Chen and published by CRC Press. This book was released on 2019-08-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises selected papers from the First International Conference on Convective Flow Boiling. The purpose of the conference is to examine state-of-science and recent developments in technology of flow boiling, i.e., boiling systems which are affected by convective flows.
Download or read book Fundamentals of Heat Exchanger Design written by Ramesh K. Shah and published by John Wiley & Sons. This book was released on 2003-08-11 with total page 978 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.
Download or read book Lectures and Surveys on G2 Manifolds and Related Topics written by Spiro Karigiannis and published by Springer Nature. This book was released on 2020-05-26 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, one of the first on G2 manifolds in decades, collects introductory lectures and survey articles largely based on talks given at a workshop held at the Fields Institute in August 2017, as part of the major thematic program on geometric analysis. It provides an accessible introduction to various aspects of the geometry of G2 manifolds, including the construction of examples, as well as the intimate relations with calibrated geometry, Yang-Mills gauge theory, and geometric flows. It also features the inclusion of a survey on the new topological and analytic invariants of G2 manifolds that have been recently discovered. The first half of the book, consisting of several introductory lectures, is aimed at experienced graduate students or early career researchers in geometry and topology who wish to familiarize themselves with this burgeoning field. The second half, consisting of numerous survey articles, is intended to be useful to both beginners and experts in the field.
Download or read book The Ricci Flow An Introduction written by Bennett Chow and published by American Mathematical Soc.. This book was released on 2004 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Ricci flow is a powerful technique that integrates geometry, topology, and analysis. Intuitively, the idea is to set up a PDE that evolves a metric according to its Ricci curvature. The resulting equation has much in common with the heat equation, which tends to 'flow' a given function to ever nicer functions. By analogy, the Ricci flow evolves an initial metric into improved metrics. Richard Hamilton began the systematic use of the Ricci flow in the early 1980s and applied it in particular to study 3-manifolds. Grisha Perelman has made recent breakthroughs aimed at completing Hamilton's program. The Ricci flow method is now central to our understanding of the geometry and topology of manifolds.This book is an introduction to that program and to its connection to Thurston's geometrization conjecture. The authors also provide a 'Guide for the hurried reader', to help readers wishing to develop, as efficiently as possible, a nontechnical appreciation of the Ricci flow program for 3-manifolds, i.e., the so-called 'fast track'. The book is suitable for geometers and others who are interested in the use of geometric analysis to study the structure of manifolds. "The Ricci Flow" was nominated for the 2005 Robert W. Hamilton Book Award, which is the highest honor of literary achievement given to published authors at the University of Texas at Austin.
Download or read book Hyperbolic Dynamics Fluctuations and Large Deviations written by D. Dolgopyat and published by American Mathematical Soc.. This book was released on 2015-04-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the semester-long special program on Hyperbolic Dynamics, Large Deviations and Fluctuations, which was held from January-June 2013, at the Centre Interfacultaire Bernoulli, École Polytechnique Fédérale de Lausanne, Switzerland. The broad theme of the program was the long-term behavior of dynamical systems and their statistical behavior. During the last 50 years, the statistical properties of dynamical systems of many different types have been the subject of extensive study in statistical mechanics and thermodynamics, ergodic and probability theories, and some areas of mathematical physics. The results of this study have had a profound effect on many different areas in mathematics, physics, engineering and biology. The papers in this volume cover topics in large deviations and thermodynamics formalism and limit theorems for dynamic systems. The material presented is primarily directed at researchers and graduate students in the very broad area of dynamical systems and ergodic theory, but will also be of interest to researchers in related areas such as statistical physics, spectral theory and some aspects of number theory and geometry.
Download or read book The Ricci Flow Techniques and Applications written by and published by American Mathematical Soc.. This book was released on 2007-04-11 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a presentation of topics in Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject. The authors have aimed at presenting technical material in a clear and detailed manner. In this volume, geometric aspects of the theory have been emphasized. The book presents the theory of Ricci solitons, Kahler-Ricci flow, compactness theorems, Perelman's entropy monotonicity and no local collapsing, Perelman's reduced distance function and applications to ancient solutions, and a primer of 3-manifold topology. Various technical aspects of Ricci flow have been explained in a clear and detailed manner. The authors have tried to make some advanced material accessible to graduate students and nonexperts. The book gives a rigorous introduction to Perelman's work and explains technical aspects of Ricci flow useful for singularity analysis. Throughout, there are appropriate references so that the reader may further pursue the statements and proofs of the various results.
Download or read book Nonlinear Waves and Solitons on Contours and Closed Surfaces written by Andrei Ludu and published by Springer Science & Business Media. This book was released on 2012-01-15 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.