Download or read book Multiphase Polymer Systems written by Andreea Irina Barzic and published by CRC Press. This book was released on 2016-09-19 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and theoretical aspects regarding the thermal and electrical transport phenomena and magnetic properties of crucial importance in advanced technologies. It reviews the most recent advances concerning morphological, rheological, interfacial, physical, fire-resistant, thermophysical, and biomedical properties of multiphase polymer systems. Concomitantly the book deals with basic investigation techniques that are sensitive in elucidating the features of each phase. It also discusses the latest research trends that offer new solutions for advanced bio- and nanotechnologies. Introduces an overview of recent studies in the area of multiphase polymer systems, their micro- and nanostructural evolutions in advanced technologies, and provides future outlooks, new challenges and opportunities. Discusses multicomponent structures that offer enhanced physical, mechanical, thermal, electrical, magnetic, and optical properties adapted to current requirements of modern technologies. Covers a wide range of materials, such as composites, blends, alloys, gels and interpenetrating polymer networks. Presents new strategies for controlling the micro- and nanomorphology and the mechanical properties of multiphase polymeric materials. Describes different applications of multiphase polymeric materials in various fields, including automotive, aeronautics and space industry, displays, and medicine.
Download or read book Polymer Liquid Crystals written by A Ciferri and published by Elsevier. This book was released on 2012-12-02 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer Liquid Crystals covers the significant developments in the field of highlight oriented polymers. This 12-chapter book emerged from lectures presented during the seminar "Polymer Liquid Crystals: Science and Technology", held at Santa Margherita Ligure, Italy on May 19-23, 1981. The opening chapters highlight the molecular basis of liquid crystallinity. The subsequent chapters deal with the synthesis, structure, properties, and macroscopic phenomena of polymer liquid crystals. These topics are followed by descriptions of the orientation of liquid crystals, specifically the instabilities in low molecular weight nematic and cholesteric liquid crystals. The final chapters consider the applications of these crystals to display devices and the advances in high-strength fibers and molecular composites. This book will be of great value to polymer liquid crystal chemists and researchers.
Download or read book Thermodynamics of Flowing Systems written by Antony N. Beris and published by Oxford University Press. This book was released on 1994-05-26 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This much-needed monograph presents a systematic, step-by-step approach to the continuum modeling of flow phenomena exhibited within materials endowed with a complex internal microstructure, such as polymers and liquid crystals. By combining the principles of Hamiltonian mechanics with those of irreversible thermodynamics, Antony N. Beris and Brian J. Edwards, renowned authorities on the subject, expertly describe the complex interplay between conservative and dissipative processes. Throughout the book, the authors emphasize the evaluation of the free energy--largely based on ideas from statistical mechanics--and how to fit the values of the phenomenological parameters against those of microscopic models. With Thermodynamics of Flowing Systems in hand, mathematicians, engineers, and physicists involved with the theoretical study of flow behavior in structurally complex media now have a superb, self-contained theoretical framework on which to base their modeling efforts.
Download or read book Thermodynamics of Fluids Under Flow written by David Jou and published by Springer Science & Business Media. This book was released on 2010-12-02 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.
Download or read book Liquid Crystalline Polymers written by Vijay Kumar Thakur and published by Springer. This book was released on 2015-11-16 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces anisotropic innovations in liquid crystalline polymers as well as new nanocomposite materials and testing techniques. The authors detail the newest discoveries of material properties, material types and phases, and material characterization. This interdisciplinary work creates valuable links that strengthen the approach to the evolving field of liquid crystalline polymers/ materials.
Download or read book Phase Transitions and Structure of Polymer Systems in External Fields written by Sergey A. Vshivkov and published by Cambridge Scholars Publishing. This book was released on 2019-05-14 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized extensive experimental and theoretical data regarding the phase transitions of polymer systems in mechanical and magnetic fields provide the possibility to predict the results of external field effects on the structure and mutual solubility of components. The data on dynamic structuring in deformed polymer blends and solutions allow for the use of found regularities by the processing of polymer systems. The methods offered in this book allow for the connection of shift of phase diagrams in the mechanical field with changes in macromolecule sizes. The tutorials described here will help the reader to correctly build the phase diagrams of polymer systems using a variety of methods.
Download or read book Optical Rheometry of Complex Fluids written by Gerald G. Fuller and published by Oxford University Press. This book was released on 1995-06-29 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained presentation of optical methods used to measure the structure and dynamics of complex fluids subject to the influence of external fields. Such fields--hydrodynamic, electric, and magnetic--are commonly encountered in both academic and industrial research, and can produce profound changes in the microscale properties of liquids comprised of polymers, colloids, liquid crystals, or surfactants. Starting with the basic Maxwell field equations, this book discusses the polarization properties of light, including Jones and Mueller calculus, and then covers the transmission, reflection, and scattering of light in anisotropic materials. Spectroscopic interactions with oriented systems such as absorptive dichroism, small wide angle light scattering, and Raman scattering are discussed. Applications of these methods to a wide range of problems in complex fluid dynamics and structure are presented, along with selected case studies chosen to elucidate the range of techniques and materials that can be studied. As the only book of its kind to present a self-contained description of optical methods used for the full range of complex fluids, this work will be special interest to a wide range of readers, including chemical engineers, physical chemists, physicists, polymer and colloid scientists, along with graduate and post-graduate researchers.
Download or read book Tensors for Physics written by Siegfried Hess and published by Springer. This book was released on 2015-04-25 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-trace formulas, coupling of irreducible tensors, rotation of tensors. Constitutive laws for optical, elastic and viscous properties of anisotropic media are dealt with. The anisotropic media include crystals, liquid crystals and isotropic fluids, rendered anisotropic by external orienting fields. The dynamics of tensors deals with phenomena of current research. In the last section, the 3D Maxwell equations are reformulated in their 4D version, in accord with special relativity.
Download or read book Rheo Physics of Multiphase Polymer Systems written by Kai Sondergaard and published by CRC Press. This book was released on 1995-06-02 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: FROM THE PREFACE Almost all polymeric systems are subjected to a flow field at least once along the route between preparation and application. . . . There is also an increased interest in predictive models on phase behavior and suitable techniques for characterizing the structure of these systems when subjected to flow. Multiphase polymeric systems are particularly susceptible to flow, which may cause orientation of species, morphological changes, and phase transitions. All these events may, in turn, affect the end product properties, such as permeability, electrical conductivity, [and] mechanical properties. In processing, escalating needs have evolved for optimization and development of novel and more uniform product properties and increased productivity. In order to arrive at an understanding of processing polymeric systems under elastic flow conditions, it is convenient to analyze the basic physical mechanisms under conditions that enable development of predictive models in conjunction with controlled experimentation. . . . In recent years, the science of rheo-physics has evolved and now involves both advanced theories and experimental techniques. Rheo-physics means the rheological, morphological, and thermodynamic behavior of structured polymer systems during flow. . . . In this monograph, the rheo-optical techniques are . . . emphasized. The book gives an introduction to rheo-physics, including fundamentals of theories, and a representative selection of applications of rheo-optical techniques for analyzing multiphase systems. The chapters contain both practical advice for the new experimenter . . . as well as review material for the experienced scientist.
Download or read book Fluid and Thermodynamics written by Kolumban Hutter and published by Springer. This book was released on 2018-09-22 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume describes continuous bodies treated as classical (Boltzmann) and spin (Cosserat) continua or fluid mixtures of such bodies. It discusses systems such as Boltzmann continua (with trivial angular momentum) and Cosserat continua (with nontrivial spin balance) and formulates the balance law and deformation measures for these including multiphase complexities. Thermodynamics is treated in the spirit of Müller–Liu: it is applied to Boltzmann-type fluids in three dimensions that interact with neighboring fluids on two-dimensional contact surfaces and/or one-dimensional contact lines. For all these situations it formulates the balance laws for mass, momenta, energy, and entropy. Further, it introduces constitutive modeling for 3-, 2-, 3-d body parts for general processes and materially objective variable sets and their reduction to equilibrium and non-equilibrium forms. Typical (reduced) fluid spin continua are liquid crystals. Prominent nematic examples of these include the Ericksen–Leslie–Parodi (ELP) formulation, in which material particles are equipped with material unit vectors (directors). Nematic liquid crystals with tensorial order parameters of rank 1 to n model substructure behavior better, and for both classes of these, the book analyzes the thermodynamic conditions of consistency. Granular solid–fluid mixtures are generally modeled by complementing the Boltzmann laws with a balance of fluctuation (kinetic) energy of the particles. The book closes by presenting a full Reynolds averaging procedure that accounts for higher correlation terms e.g. a k-epsilon formulation in classical turbulence. However, because the volume fraction is an additional variable, the theory also incorporates ‘k-epsilon equations’ for the volume fraction.
Download or read book Physical Review written by and published by . This book was released on 2000-08 with total page 1600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Download or read book Phase Transitions in Polymers The Role of Metastable States written by Stephen Z.D. Cheng and published by Elsevier. This book was released on 2008-09-10 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume
Download or read book Liquid Crystalline Polymers written by A. M. Donald and published by Cambridge University Press. This book was released on 2006-05-11 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 2006 edition explaining the underlying science and applications of liquid crystalline polymers.
Download or read book Rheology and Its Role in Plastics Processing written by P. Prentice and published by iSmithers Rapra Publishing. This book was released on 1995 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This review encompasses fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological c094 techniques. It describes the main plastics processing techniques, and explains the influence of polymer melt rheology upon their operation. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.
Download or read book Liquid Crystal Elastomers written by Mark Warner and published by Oxford University Press. This book was released on 2007-04-05 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
Download or read book Phase Transition Dynamics written by Akira Onuki and published by Cambridge University Press. This book was released on 2002-06-06 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Download or read book Flow Induced Alignment in Composite Materials written by T.D. Papathanasiou and published by Woodhead Publishing. This book was released on 2021-10-19 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. The first edition of this book detailed, in a single volume, the science, processing, applications, characterization and properties of composite materials reinforced with short fibers that have been orientated in a preferred direction by flows arising during processing. The technology of fiber-reinforced composites is continually evolving and this new edition provides timely and much needed information about this important class of engineering materials. Each of the original chapters have been brought fully up-to-date and new developments such as: the advent of nano-composites and the issues relating to their alignment; the wider use of long-fiber composites and the appearance of models able to capture their orientation during flow; the wider use of flows in micro-channels in the context of composites fabrication; and the increase in computing power, which has made relevant simulations (especially coupling flow kinematics to fiber content and orientation) much easier to perform are all covered in detail. The book will be an essential up-to-date reference resource for materials scientists, students, and engineers who are working in the relevant areas of particulate composites, short fiber-reinforced composites or nanocomposites. - Presents recent progress on flow-induced alignment, modelling and design of fiber and particulate filled polymer composites - Discusses important advances such as alignment of CNTs in polymer nanocomposites and molecular alignment of polymers induced by the injection molding process in the presence of fillers such as short fibers - Presents fiber interaction/diffusion modelling and also the fiber flexure/breakage models