EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book First principles Study of Electronic Properties of One Dimensional Nanostructures

Download or read book First principles Study of Electronic Properties of One Dimensional Nanostructures written by Junwen Li and published by . This book was released on 2010 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Tianyou Zhai and published by John Wiley & Sons. This book was released on 2012-10-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2008-07-20 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. This book presents exciting, state-of-the-art developments in synthesis and properties of 1D nanostructures with many kinds of morphologies and compositions as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.

Book First principles Studies of Carbon Nanostructures and Spin phonon and Electron phonon Coupling in Solids

Download or read book First principles Studies of Carbon Nanostructures and Spin phonon and Electron phonon Coupling in Solids written by Kevin Timothy Chan and published by . This book was released on 2012 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents first-principles theoretical studies on two topics of condensed matter physics. The first topic is the adsorption of metal adatoms on graphene. Graphene, a two-dimensional material made of carbon atoms arranged in a honeycomb lattice, has many outstanding properties that can be enhanced or tailored by adsorbing adatoms on its surface. The second topic involves the coupling of spins or electrons to phonons in a solid. The interaction between different degrees of freedom of a material complicates the study of its properties but also leads to fascinating phenomena, such as superconductivity, and potential device applications. This dissertation is organized into six chapters: · In Chapter One, we give an overview of this work and review the first-principles theory and methods used in our studies. · Chapter Two focuses on structural, energetic, and electronic properties for a variety of adatom species adsorbed on the graphene surface. We classify different species as having mostly ionic or covalent character of bonding to graphene. For ionically bonded adatoms, charge transfer between the adatom and graphene is signficant. We find general trends relating the surface dipole moment, work function, and atomic ionization potential of the adatom species. · In Chapter Three, we study the electronic structure of adatoms on graphene when a gate voltage is applied to control the number of electrons in the system. Lithium on graphene, a prototype system, and cobalt on graphene, an experimentally relevant case, are studied. We find that localized states on the adatom can be charged or discharged by the application of gate voltage, and we study the changes in potential and charge density of the system as electrons are added or removed. · In Chapter Four, we extend the work in Chapter Three to consider the possibility of transforming the electronic structure of one species of adatom on graphene into that of another by applying a gate voltage. We find that within our model, such transformations are possible for certain adatom species. · In Chapter Five, the zone-center phonons for the frustrated antiferromagnetic compound ZnCr2O4 are calculated. We find that the transition from nonmagnetic to antiferromagnetic ordering causes a splitting of certain degnerate phonon frequencies, in agreement with experimental results. · In Chapter Six, the pressure dependence of electron-phonon coupling and the superconducting transition temperature (Tc) in elemental arsenic is studied. We find that an experimentally observed peak in Tc as a function of pressure is related to a structural transition and can be explained mainly by changes in electronic structure and phonon frequencies with pressure.

Book Nanomaterials

    Book Details:
  • Author : Engg Kamakhya Prasad Ghatak
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2018-11-05
  • ISBN : 3110609355
  • Pages : 432 pages

Download or read book Nanomaterials written by Engg Kamakhya Prasad Ghatak and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work studies under different physical conditions the carrier contribution to elastic constants in heavily doped optoelectronic materials. In the presence of intense photon field the authors apply the Heisenberg Uncertainty Principle to formulate electron statistics. Many open research problems are discussed and numerous potential applications as quantum sensors and quantum cascade lasers are presented.

Book First principles Calculations In Real space Formalism  Electronic Configurations And Transport Properties Of Nanostructures

Download or read book First principles Calculations In Real space Formalism Electronic Configurations And Transport Properties Of Nanostructures written by Kikuji Hirose and published by World Scientific. This book was released on 2005-01-19 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: With cutting-edge materials and minute electronic devices being produced by the latest nanoscale fabrication technology, it is essential for scientists and engineers to rely on first-principles (ab initio) calculation methods to fully understand the electronic configurations and transport properties of nanostructures. It is now imperative to introduce practical and tractable calculation methods that accurately describe the physics in nanostructures suspended between electrodes.This timely volume addresses novel methods for calculating electronic transport properties using real-space formalisms free from geometrical restrictions. The book comprises two parts: The first details the basic formalism of the real-space finite-difference method and its applications. This provides the theoretical foundation for the second part of the book, which presents the methods for calculating the properties of electronic transport through nanostructures sandwiched by semi-infinite electrodes./a

Book Nanowires

    Book Details:
  • Author : Abbass A. Hashim
  • Publisher : BoD – Books on Demand
  • Release : 2011-07-19
  • ISBN : 9533073276
  • Pages : 568 pages

Download or read book Nanowires written by Abbass A. Hashim and published by BoD – Books on Demand. This book was released on 2011-07-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and building up the foundation of nanowire concept is a high requirement and a bridge to new technologies. Any attempt in such direction is considered as one step forward in the challenge of advanced nanotechnology. In the last few years, InTech scientific publisher has been taking the initiative of helping worldwide scientists to share and improve the methods and the nanowire technology. This book is one of InTechs attempts to contribute to the promotion of this technology.

Book Optical and Electronic Properties of Nano Materials from First Principles Computation

Download or read book Optical and Electronic Properties of Nano Materials from First Principles Computation written by Jack Deslippe and published by . This book was released on 2011 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in computational physics and chemistry have lead to greater understanding and predictability of the electronic and optical properties of materials. This understanding can be used to impact directly the development of future devices (whose properties depend on the underlying materials) such as light-emitting diodes (LEDs) and photovoltaics. In particular, density functional theory (DFT) has become the standard method for predicting the ground-state properties of solid-state systems, such-as total energies, atomic configurations and phonon frequencies. In the same period, the so called many-body perturbation theory techniques based on the dynamics of the single-particle and two-particle Green's function have become one of the standard methods for predicting the excited state properties associated with the addition of an electron, hole or electron-hole pair into a material. The GW and Bethe-Salpeter equation (GW-BSE) technique is a particularly robust methodology for computing the quasiparticle and excitonic properties of materials. The challenge over the last several years has been to apply these methods to increasingly complex systems. Nano-materials are materials that are very small (on the order of a nanometer) in at least one dimension (e.g. molecules, tubes/rods and sheets). These materials are of great interest for researchers because they exhibit new and interesting physical and electronic properties compared to those of conventional bulk crystals. These physical properties can often be tuned by controlling the geometry of the materials (for example the chiral angle of a nanotube). Various DFT computer packages have been optimized to compute the ground-state properties of large systems and nano-materials. However, the application of the GW-BSE methodology to large systems and large nano-materials is often thought to be too computationally demanding. In this work, we will discuss research towards understanding the electronic and optical properties of nano-materials using (and extending) first-principles computational techniques, namely the GW-BSE technique for applications to large systems and nano-materials in particular. While, the GW-BSE approach has, in the past, been prohibitively expensive on systems with more than 50 atoms, in Chapter 2, we show that through a combination methodological and algorithmic improvements, the standard GW-BSE approach can be applied to systems of 500-1000 atoms or 100 AU x 100 AU x 100 AU unit cells. We show that nearly linear parallel scaling of the GW-BSE methodology can be obtained up to tens of thousands (and beyond) of CPUs on current and future high performance supercomputers. In Chapter 3, we will discuss improving the DFT starting point of the GW-BSE approach through the use of COHSEX exchange-correlations functionals to create a nearly diagonal self-energy matrix. We show applications of this new methodology to molecular systems. In Chapter 4, we discuss the application of the GW-BSE methodology to semiconducting single-walled carbon nanotubes (SWCNTs) and the discovery of novel many-body physics in 1D semiconductors. In Chapter 5, we discuss the application of the GW-BSE methodology to metallic SWCNTs and graphene and the discovery of unexpectedly strong excitonic effects in low-dimensional metals and semi-metals.

Book Advances in Nanotechnology Research and Application  2011 Edition

Download or read book Advances in Nanotechnology Research and Application 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 8760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Synthesis  Processing and Application of Micro and Nanostructured Materials

Download or read book Synthesis Processing and Application of Micro and Nanostructured Materials written by Bogdan Stefan Vasile and published by MDPI. This book was released on 2020-12-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is focused on nanostructured materials, which have been well-studied in various fields from life to materials sciences. Nanostructured science has the potential to help make revolutionary discoveries based on modifying the properties of these materials compared with micro-structured materials. Nanostructured materials are the key to discovering new products based on new technologies. This book is focused on presenting new state-of-the-art methods for the synthesis and processing of nanostructured materials. These materials can be used in both in life and materials science with applications from biomedical devices, drug delivery systems, medical imaging with multiferoic materials, high-energy batteries, capacitors, superconductors, and aerospace components.

Book Handbook of Computational Chemistry

Download or read book Handbook of Computational Chemistry written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2012-01-14 with total page 1451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.

Book Electronic and Mechanical Properties of Nano heterostructures from First Principles

Download or read book Electronic and Mechanical Properties of Nano heterostructures from First Principles written by Satyesh Kumar Yadav and published by . This book was released on 2013 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics  Chemistry And Applications Of Nanostructures   Proceedings Of The International Conference Nanomeeting   2015

Download or read book Physics Chemistry And Applications Of Nanostructures Proceedings Of The International Conference Nanomeeting 2015 written by Victor E Borisenko and published by World Scientific. This book was released on 2015-05-04 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic, optoelectronic and energy conversion devices. They present achievements discussed at Special Sessions 'Frontiers of Two-Dimensional Crystals', 'Nanoelectromagnetics' and Belarus-Korea Workshop 'Frontiers of Advanced Nanodevices' organized within Nanomeeting 2015.Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanophotonics, nanosensorics and nanoenergetics as well as nanotechnology and quantum processing of information, this book gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.

Book Chemical Modifications Of Graphene like Materials

Download or read book Chemical Modifications Of Graphene like Materials written by Nguyen Thanh Tien and published by World Scientific. This book was released on 2023-12-27 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene-like materials have attracted considerable interest in the fields of condensed-matter physics, chemistry, and materials science due to their interesting properties as well as the promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.The contents present the diverse phenomena under development in the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations and spin configurations of graphene-like materials through the chemical adsorptions, intercalations, substitutions, decorations, and heterojunctions, are taken into account. Specifically, the hydrogen-, oxygen-, transition-metal- and rare-earth-dependent compounds are thoroughly explored for the unusual spin distributions. The developed theoretical framework yields concise physical, chemical, and material pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the atom- and spin-dominated energy bands, the orbital-dependent sub-envelope functions, the spatial charge distributions, the atom- orbital- and spin-projected density of states, the spin densities, the magnetic moments, and the rich optical excitations. All consistent quantities are successfully identified by the multi-orbital hybridizations in various chemical bonds and guest- and host-induced spin configurations.The scope of the book is sufficiently broad and deep in terms of the geometric, electronic, magnetic, and optical properties of 3D, 2D, 1D, and 0D graphene-like materials with different kinds of chemical modifications. How to evaluate and analyze the first-principles results is discussed in detail. The development of the theoretical framework, which can present the diversified physical, chemical, and material phenomena, is obviously illustrated for each unusual condensed-matter system. To achieve concise physical and chemical pictures, the direct and close combinations of the numerical simulations and the phenomenological models are made frequently available via thorough discussions. It provides an obvious strategy for the theoretical framework, very useful for science and engineering communities.

Book Multiphysics in Nanostructures

Download or read book Multiphysics in Nanostructures written by Yoshitaka Umeno and published by Springer. This book was released on 2017-07-13 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to systematically review and summarize the recent rapid advances and varied results of multiphysics in nanoscale materials including elastic strain engineering. This book comprises topics on remarkable properties of multiphysics in low-dimensional nanoscale components from first-principles density-functional theory (or tight binding) calculations, which are essential for the nonlinear multiphysics couplings due to quantum mechanical effects. This volume provides a clear point of view and insight into the varied work done in diverse fields and disciplines and promotes a fundamental to state-of-the-art understanding of properties of multiphysics. Because the novelty and complexity of mechanical and multiphysical properties of low-dimensional nanostructures originate from combinations of outer shapes (e.g., films, wires, tubes, and dots) and inner understructures (e.g., grain boundaries, domain walls, vacancies, and impurities), the nanostructures are classified into fundamental elements, and the properties of each element and their interplay are reviewed for systematic, in-depth understanding. This book points out a new direction for multiphysics in nanostructures, which opens the door both to exploiting and to designing novel functionalities at the nanoscale. Readers will be interested in this rapidly expanding multidisciplinary work and will be motivated to enter this promising research area.

Book Silicon Nanomaterials Sourcebook

Download or read book Silicon Nanomaterials Sourcebook written by Klaus D. Sattler and published by CRC Press. This book was released on 2017-07-28 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Book Real space Pseudopotential Calculations for the Electronic and Structural Properties of Nanostructures

Download or read book Real space Pseudopotential Calculations for the Electronic and Structural Properties of Nanostructures written by Jiaxin Han and published by . This book was released on 2010 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructures often possess unique properties, which may lead to the development of new microelectronic and optoelectronic devices. They also provide an opportunity to test fundamental quantum mechanical concepts such as the role of quantum confinement. Considerable effort has been made to understand the electronic and structural properties of nanostructures, but many fundamental issues remain. In this work, the electronic and structural properties of nanostructures are examined using several new computational methods. The effect of dimensional confinement on quantum levels is investigated for hydrogenated Ge 110 using the plane-wave density-functional-theory pseudopotential method. We present a real-space pseudopotential method for calculating the electronic structure of one-dimensional periodic systems such as nanowires. As an application of this method, we examine H-passivated Si nanowires. The band structure and heat of formation of the Si nanowires are presented and compared to plane wave methods. Our method is able to offer the same accuracy as the traditional plane wave methods, but offers a number of computational advantages such as the ability to handle large systems and a better ease of implementation for highly parallel platforms. Doping is important to many potential applications of nano-regime semiconductors. A series of first-principles studies are conducted on the P-doped Si 110 nanowires by the real-space pseudopotential methods. Nanowires of varied sizes and different doping positions are investigated. We calculate the binding energies of P atoms, band gaps of the wires, energetics of P atoms in different doping positions and core-level shift of P atoms. Defect wave functions of P atoms are also analyzed. In addition, we study the electronic properties of phosphorus-doped silicon 111 nanofilms using the real-space pseudopotential method. Nanofilms with varied sizes and different doping positions are investigated. We calculate the binding energies of P atoms, band gaps of the films, and energetics of P atoms in different doping positions. Quantum confinement effects are compared with P-doped Si nanocrystals and as well as nanowires. We simulate the nanofilm STM images with P defects in varied film depths, and make a comparison with the experimental measurement.