EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A First Look at Rigorous Probability Theory

Download or read book A First Look at Rigorous Probability Theory written by Jeffrey Seth Rosenthal and published by World Scientific. This book was released on 2006 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.

Book A First Look At Stochastic Processes

Download or read book A First Look At Stochastic Processes written by Jeffrey S Rosenthal and published by World Scientific. This book was released on 2019-09-26 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the theory of stochastic processes, that is, randomness which proceeds in time. Using concrete examples like repeated gambling and jumping frogs, it presents fundamental mathematical results through simple, clear, logical theorems and examples. It covers in detail such essential material as Markov chain recurrence criteria, the Markov chain convergence theorem, and optional stopping theorems for martingales. The final chapter provides a brief introduction to Brownian motion, Markov processes in continuous time and space, Poisson processes, and renewal theory.Interspersed throughout are applications to such topics as gambler's ruin probabilities, random walks on graphs, sequence waiting times, branching processes, stock option pricing, and Markov Chain Monte Carlo (MCMC) algorithms.The focus is always on making the theory as well-motivated and accessible as possible, to allow students and readers to learn this fascinating subject as easily and painlessly as possible.

Book First Look At Rigorous Probability Theory  A  2nd Edition

Download or read book First Look At Rigorous Probability Theory A 2nd Edition written by Jeffrey S Rosenthal and published by World Scientific Publishing Company. This book was released on 2006-11-14 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to probability theory using measure theory. It is designed for graduate students in a variety of fields (mathematics, statistics, economics, management, finance, computer science, and engineering) who require a working knowledge of probability theory that is mathematically precise, but without excessive technicalities. The text provides complete proofs of all the essential introductory results. Nevertheless, the treatment is focused and accessible, with the measure theory and mathematical details presented in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects. In this new edition, many exercises and small additional topics have been added and existing ones expanded. The text strikes an appropriate balance, rigorously developing probability theory while avoiding unnecessary detail.

Book Probability Essentials

    Book Details:
  • Author : Jean Jacod
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642556825
  • Pages : 247 pages

Download or read book Probability Essentials written by Jean Jacod and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.

Book An Introduction to Measure theoretic Probability

Download or read book An Introduction to Measure theoretic Probability written by George G. Roussas and published by Gulf Professional Publishing. This book was released on 2005 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas, should be equipped with. The approach is classical, avoiding the use of mathematical tools not necessary for carrying out the discussions. All proofs are presented in full detail. * Excellent exposition marked by a clear, coherent and logical devleopment of the subject * Easy to understand, detailed discussion of material * Complete proofs

Book Foundations of Modern Probability

Download or read book Foundations of Modern Probability written by Olav Kallenberg and published by Springer Science & Business Media. This book was released on 2002-01-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book Probability

    Book Details:
  • Author : Rick Durrett
  • Publisher : Cambridge University Press
  • Release : 2010-08-30
  • ISBN : 113949113X
  • Pages : pages

Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Book Introduction to Probability

Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Measures  Integrals and Martingales

Download or read book Measures Integrals and Martingales written by René L. Schilling and published by Cambridge University Press. This book was released on 2005-11-10 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.

Book Basic Probability Theory

Download or read book Basic Probability Theory written by Robert B. Ash and published by Courier Corporation. This book was released on 2008-06-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.

Book Measure  Integral and Probability

Download or read book Measure Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Book Probability and Statistics

Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Book A Natural Introduction to Probability Theory

Download or read book A Natural Introduction to Probability Theory written by R. Meester and published by Springer Science & Business Media. This book was released on 2008-03-16 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.

Book Probability and Measure Theory

Download or read book Probability and Measure Theory written by Robert B. Ash and published by Academic Press. This book was released on 2000 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization

Book A User s Guide to Measure Theoretic Probability

Download or read book A User s Guide to Measure Theoretic Probability written by David Pollard and published by Cambridge University Press. This book was released on 2002 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.