EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Characterization of DC Magnetron Sputtered ZnO Films

Download or read book Fabrication and Characterization of DC Magnetron Sputtered ZnO Films written by Janet Maniate and published by . This book was released on 2003 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Manufacturing Gallium Doped ZnO Thin Films Suitable for Use in Thin Film Transistors Using Unbalanced Magnetron Sputtering

Download or read book Manufacturing Gallium Doped ZnO Thin Films Suitable for Use in Thin Film Transistors Using Unbalanced Magnetron Sputtering written by Timothy Russell Jones and published by . This book was released on 2013 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gallium doped zinc oxide (GZO) thin films were deposited onto Si (100) substrates. Depositions were performed at relatively low temperatures suitable for use in manufacturing thin films on plastic substrates. Substrates were thermally oxidized, and then thin films were deposited via radio frequency (RF) unbalanced magnetron sputtering. ZnO thin films were also sputtered in order to act as a seed layer for growing nanostructures by the hydrothermal method. Sputtering parameters evaluated independently include pressure, gas composition, power, temperature and the presence of an external magnetic field. Scanning electron microscopy (SEM) was performed on hydrothermally produced samples. Sputtered films used to compare sputtering parameters were grown at thicknesses of 33-64 nm as measured by ellipsometry. The GZO sputtering target had a 5% gallium content, which was deposited on the thin films. This was confirmed by X-ray Photoelectron Spectroscopy (XPS). Films were also evaluated using Raman spectroscopy and four-point probe terminal sensing. Using a comparison of the X-ray diffraction (XRD) of the films, it was possible to evaluate the sputtering parameters in order to minimize their crystallite size. It was calculated that the optimum power to apply to the target in order to minimize crystallite size was 128W. Films also minimized crystallite size by several other independent factors, such as not being in the presence of oxygen, being in the presence of an external magnetic field, being at a higher temperature, or being at a higher pressure during sputtering.

Book Investigation of Relationship Between the Plasma and Material Characteristics of Zinc Oxide  ZnO  Thin Film by Radio Frequency  RF  Reactive Magnetron Sputtering

Download or read book Investigation of Relationship Between the Plasma and Material Characteristics of Zinc Oxide ZnO Thin Film by Radio Frequency RF Reactive Magnetron Sputtering written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication of Zinc Nitride Thin Films Using RF Magnetron Sputtering Deposition for Optoelectronic Applications

Download or read book Fabrication of Zinc Nitride Thin Films Using RF Magnetron Sputtering Deposition for Optoelectronic Applications written by Ting Wen and published by . This book was released on 2012 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc nitride thin films possess a small optical band gap with direct transition, low resistivity, high mobility and carrier concentration. Therefore, it may be suitable as an optoelectronic material for infrared sensors, smart windows and energy conversion devices. The objective of this work is to grow zinc nitride thin films using RF magnetron sputtering, understand its mechanical, optical, and electrical properties, and investigate its performance as light sensing devices. Synthesis and characterization of zinc nitride thin films has been investigated in this work. An RF magnetron sputtering deposition was employed to synthesize zinc nitride thin films using pure metal zinc target in either N2-Ar or N2-Ar-H2 mixtures. The microstructural, optical and electrical characterizations of the representative films were investigated with stylus profilometry, XRD, AFM, SEM, TEM, UV-VIS-NIR double beam spectrometry, and Hall effect measurement. The photoresponse of the zinc nitride photoconductors was also studied under the irradiation of white light and NIR light. The as-deposited zinc nitride thin films were relatively soft and densely packed with smooth surface. It possesses a narrow optical band gap in the NIR range with direct transition. The zinc nitride showed n-type conductivity with low resistivity and high carrier concentration. To study the RF discharge power effect, the zinc nitride thin films were synthesized at different discharge powers densities. With discharge power density increasing, the film deposition rate increased, and the zinc nitride films acquired better crystalline structure, smaller optical band gap and less oxygen contaminations. After thermal annealing at moderate temperatures in either air or O2, the annealed zinc nitride thin films were photoconductive under irradiation of both NIR light and white light. The largest photoresponse and fastest response times were measured at the room temperature for the zinc nitride thin films annealed at 300 degree in the air. Hydrogen inclusion can modify the electrical and optical properties of crystalline semiconductor films by introducing impurity donor states. The ZnNx:H films deposited in N2-Ar-H2 mixture acquired less oxygen contamination and higher relative nitrogen atom concentration than the ZnNx films deposited in N2-Ar mixture. The as-deposited ZnNx:H films showed a clear photonic behavior under white light irradiation, and the annealed ZnNx:H films exhibited a pronounced change in resistance under both white light and NIR light irradiation comparing to the annealed ZnNx films. This was the first time to report photoresponse of zinc nitride thin films fabricated by reactive sputtering method. The photoconductivity was gradually improved by optimization of deposition conditions, annealing conditions and film compositions.

Book Fabrication Process of P type ZnO Thin Film by RF Sputtering Technique

Download or read book Fabrication Process of P type ZnO Thin Film by RF Sputtering Technique written by Afef Ismail Abdulrazzaq and published by . This book was released on 2015 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Fabrication of Codoped ZnO Thin Films by DC Magnetron Sputtering

Download or read book The Fabrication of Codoped ZnO Thin Films by DC Magnetron Sputtering written by Haslinda Abdul Hamid and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Physical Vapor Deposition  PVD  Processing

Download or read book Handbook of Physical Vapor Deposition PVD Processing written by D. M. Mattox and published by Cambridge University Press. This book was released on 2014-09-19 with total page 947 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.

Book Optical Properties of Zinc Oxide  ZnO  Thin Film by RF Magnetron Sputtering

Download or read book Optical Properties of Zinc Oxide ZnO Thin Film by RF Magnetron Sputtering written by Khairul Nadzrin Rosli and published by . This book was released on 2006 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reactive High Power Impulse Magnetron Sputtering of Zinc Oxide for Thin Film Transistor Applications

Download or read book Reactive High Power Impulse Magnetron Sputtering of Zinc Oxide for Thin Film Transistor Applications written by Amber Nicole Reed and published by . This book was released on 2015 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) is an emerging thin film transistor (TFT) material for transparent flexible displays and sensor technologies, where low temperature synthesis of highly crystallographically ordered films over large areas is critically needed. This study maps plasma assisted synthesis characteristics, establishes polycrystalline ZnO growth mechanisms and demonstrates for the first time low-temperature and scalable deposition of semiconducting grade ZnO channels for TFT applications using reactive high power impulse magnetron sputtering (HiPIMS). Plasma parameters, including target currents, ion species and their energies were measured at the substrate surface location with mass spectroscopy as a function of pressure and applied voltage during HiPIMS of Zn and ZnO targets in O2/Ar. The results were correlated to film microstructure development investigated with x-ray diffraction, atomic force microscopy, scanning electron microscopy and transmission electron microscopy which helped establish film nucleation and growth mechanisms. Competition for nucleation by (100), (101) and (002) oriented crystallites was identified at the early stages of film growth, which can result in a layer of mixed crystal orientation at the substrate interface, a microstructural feature that is detrimental to TFT performance due to increased charge carrier scattering in back-gated TFT devices. The study revealed that nucleation of both (100) and (101) orientations can be suppressed by increasing the plasma density while decreasing ion energy. After the initial nucleation layer, the microstructure evolves to strongly textured with the (002) crystal plane oriented parallel to the substrate surface. The degree of (002) alignment was pressure-dependent with lower deposition pressures resulting in films with (002) alignment less than 3.3°, a trend attributed to less energy attenuation of the low energy (2- 6 eV) Ar+, O+, and O2+ ions observed with mass spectrometry measurements. At pressures of 7 mTorr and lower, a second population of ionized gas (Ar+, O+, and O2+) species with energies up to 50 eV appeared. The presence of higher energy ions corresponded with a bimodal distribution of ZnO grain sizes, confirming that high energy bombardment has significant implications on microstructural uniformity during large area growth. Based on the established correlations between process parameters, plasma characteristics, film structure and growth mechanisms, optimum deposition conditions for (002) oriented nanocrystalline ZnO synthesis at 150 °C were identified and demonstrated for both silicon oxide wafers of up to 4 inch diameter and on flexible polymer (Kapton) substrates. The feasibility of the low temperature processing of ZnO films for TFT applications was verified by preliminary tests with back-gated device prototypes. Directions of future research are outlined to further develop this low temperature growth method and apply results of this study for ZnO applications in semiconductor devices.

Book State of the Art Program on Compound Semiconductors XXXVI and Wide Bandgap Semiconductors for Photonic and Electronic Devices and Sensors II

Download or read book State of the Art Program on Compound Semiconductors XXXVI and Wide Bandgap Semiconductors for Photonic and Electronic Devices and Sensors II written by Electrochemical Society. Electronics Division and published by The Electrochemical Society. This book was released on 2002 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sputter Deposited ZnO Thin Films for Gas Sensing Application

Download or read book Sputter Deposited ZnO Thin Films for Gas Sensing Application written by Anil Kumar Gadipelly and published by LAP Lambert Academic Publishing. This book was released on 2015-05-04 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we have discussed the preparation and characterization of pure ZnO thin films using RF magnetron sputtering technique.The deposition parameters such as substrate temperature and film thickness are optimized for producing good quality films.Systematic characterization of as deposited and annealed films has been discussed from the crystal structure, surface morphology, film composition, optical and electrical properties.The films prepared under optimized conditions are tested for gas sensing characteristics towards ammonia g

Book Design and Fabrication of Self Powered Micro Harvesters

Download or read book Design and Fabrication of Self Powered Micro Harvesters written by C. T. Pan and published by John Wiley & Sons. This book was released on 2014-04-09 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with interdigital electrode. Focusing on the latest developments of self-powered microgenerators such as micro rotary with LTCC and filament winding method, flexible substrate, and piezo fiber-typed microgenerator with sound organization, the fabrication processes involved in MEMS and nanotechnology are introduced chapter by chapter. In addition, analytical solutions are developed for each generator to help the reader to understand the fundamentals of physical phenomena. Fully illustrated throughout and of a high technical specification, it is written in an accessible style to provide an essential reference for industry and academic researchers. Comprehensive treatment of the newer harvesting devices including vibration-induced and rotary electromagnetic microgenerators, polyvinylidene fluoride (PVDF) nanoscale/microscale fiber, and piezo-micro-generators Presents innovative technologies including LTCC (low temperature co-fire ceramic) processes, and PCB (printed circuit board) processes Offers interdisciplinary interest in MEMS/NEMS technologies, green energy applications, bio-related sensors, actuators and generators Presented in a readable style describing the fundamentals, applications and explanations of micro-harvesters, with full illustration

Book ZnO Nanostructures

    Book Details:
  • Author : Yue Zhang
  • Publisher : Royal Society of Chemistry
  • Release : 2017-06-21
  • ISBN : 1788011732
  • Pages : 307 pages

Download or read book ZnO Nanostructures written by Yue Zhang and published by Royal Society of Chemistry. This book was released on 2017-06-21 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: As wide band semiconductors with rich morphologies and interesting electric, optical, mechanical and piezoelectric properties, ZnO nanostructures have great potential in applications, such as strain sensors, UV detectors, blue LED, nano generators, and biosensors. ZnO Nanostructures: Fabrication and Applications covers the controllable synthesis and property optimization of ZnO nanostructures through to the preparation and performance of nanodevices for various applications. The book also includes recent progress in property modulation of ZnO nanomaterials and new types of devices as well as the latest research on self-powered devices and performance modulation of ZnO nanodevices by multi-field coupled effects. Authored by a leading researcher working within the field, this volume is applicable for those working in nanostructure fabrication and device application in industry and academia and is appropriate from advanced undergraduate level upwards.

Book Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics

Download or read book Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics written by Mahmoud Abdelfatah and published by Cuvillier Verlag. This book was released on 2016-07-08 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The low cost and low temperature electrochemical deposition technique was employed to grow Cu2O thin films and ZnO:Al thin films were deposited by d.c. magnetron sputtering in order to fabricate solar cells. The potentiostatic and galvanostatic electrodeposition modes were used to deposit the Cu2O thin films. Raman spectra of thin films have shown characteristic frequencies of crystalline Cu2O. The contact between Cu2O and Au is found to be an Ohmic contact. The devices grown by a potentiostatic mode have higher efficiency than those grown by a galvanostatic mode. The optimum thickness of Cu2O thin films as an absorber layer in solar cells. was found to be around 3 µm respect to a high efficiency. Flexible and light weight solar cell was fabricated on plastic substrate.

Book Design  Fabrication  and Characterization of Multifunctional Nanomaterials

Download or read book Design Fabrication and Characterization of Multifunctional Nanomaterials written by Sabu Thomas and published by Elsevier. This book was released on 2021-11-24 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy.The book explores major synthesis methods and functional studies, including: - Brillouin spectroscopy; - Temperature-dependent Raman spectroscopic studies; - Magnetic, ferroelectric, and magneto-electric coupling analysis; - Organ-on-a-chip methods for testing nanomaterials; - Magnetron sputtering techniques; - Pulsed laser deposition techniques; - Positron annihilation spectroscopy to prove defects in nanomaterials; - Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. - Explains the major design and fabrication techniques and processes for a range of multifunctional nanomaterials; - Demonstrates the design and development of magnetic, ferroelectric, multiferroic, and carbon nanomaterials for electronic applications, energy generation, and storage; - Green synthesis techniques and the development of nanofibers and thin films are also emphasized.