EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Turbulent Combustion

    Book Details:
  • Author : Norbert Peters
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 1139428063
  • Pages : 322 pages

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Book Radiative Heat Transfer in Turbulent Combustion Systems

Download or read book Radiative Heat Transfer in Turbulent Combustion Systems written by Michael F. Modest and published by Springer. This book was released on 2016-01-06 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book OpenFOAM

Download or read book OpenFOAM written by J. Miguel Nóbrega and published by Springer. This book was released on 2019-01-24 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.

Book Advances in Numerical Methods

Download or read book Advances in Numerical Methods written by Nikos Mastorakis and published by Springer Science & Business Media. This book was released on 2009-07-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.

Book High Performance Computing in Science and Engineering   16

Download or read book High Performance Computing in Science and Engineering 16 written by Wolfgang E. Nagel and published by Springer. This book was released on 2017-01-11 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Book Combustion Physics

Download or read book Combustion Physics written by Chung K. Law and published by Cambridge University Press. This book was released on 2010-08-23 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text incorporates these advances in a comprehensive treatment of the fundamental principles of combustion physics. The presentation emphasises analytical proficiency and physical insight, with the former achieved through complete, though abbreviated, derivations at different levels of rigor, and the latter through physical interpretations of analytical solutions, experimental observations, and computational simulations. Exercises are mostly derivative in nature in order to further strengthen the student's mastery of the theory. Implications of the fundamental knowledge gained herein on practical phenomena are discussed whenever appropriate. These distinguishing features provide a solid foundation for an academic program in combustion science and engineering.

Book Recent Advances in Computational and Experimental Mechanics  Vol   I

Download or read book Recent Advances in Computational and Experimental Mechanics Vol I written by D. Maity and published by Springer. This book was released on 2022-12-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book (Vol. - I) presents select proceedings of the first Online International Conference on Recent Advances in Computational and Experimental Mechanics (ICRACEM 2020) and focuses on theoretical, computational and experimental aspects of solid and fluid mechanics. Various topics covered are computational modelling of extreme events; mechanical modelling of robots; mechanics and design of cellular materials; mechanics of soft materials; mechanics of thin-film and multi-layer structures; meshfree and particle based formulations in continuum mechanics; multi-scale computations in solid mechanics, and materials; multiscale mechanics of brittle and ductile materials; topology and shape optimization techniques; acoustics including aero-acoustics and wave propagation; aerodynamics; dynamics and control in micro/nano engineering; dynamic instability and buckling; flow-induced noise and vibration; inverse problems in mechanics and system identification; measurement and analysis techniques in nonlinear dynamic systems; multibody dynamical systems and applications; nonlinear dynamics and control; stochastic mechanics; structural dynamics and earthquake engineering; structural health monitoring and damage assessment; turbomachinery noise; vibrations of continuous systems, characterization of advanced materials; damage identification and non-destructive evaluation; experimental fire mechanics and damage; experimental fluid mechanics; experimental solid mechanics; measurement in extreme environments; modal testing and dynamics; experimental hydraulics; mechanism of scour under steady and unsteady flows; vibration measurement and control; bio-inspired materials; constitutive modelling of materials; fracture mechanics; mechanics of adhesion, tribology and wear; mechanics of composite materials; mechanics of multifunctional materials; multiscale modelling of materials; phase transformations in materials; plasticity and creep in materials; fluid mechanics, computational fluid dynamics; fluid-structure interaction; free surface, moving boundary and pipe flow; hydrodynamics; multiphase flows; propulsion; internal flow physics; turbulence modelling; wave mechanics; flow through porous media; shock-boundary layer interactions; sediment transport; wave-structure interaction; reduced-order models; turbo-machinery; experimental hydraulics; mechanism of scour under steady and unsteady flows; applications of machine learning and artificial intelligence in mechanics; transport phenomena and soft computing tools in fluid mechanics. The contents of these two volumes (Volumes I and II) discusses various attributes of modern-age mechanics in various disciplines, such as aerospace, civil, mechanical, ocean engineering and naval architecture. The book will be a valuable reference for beginners, researchers, and professionals interested in solid and fluid mechanics and allied fields.

Book Computational Fluid Dynamics for Engineers

Download or read book Computational Fluid Dynamics for Engineers written by Bengt Andersson and published by Cambridge University Press. This book was released on 2011-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.

Book Fundamentals of Premixed Turbulent Combustion

Download or read book Fundamentals of Premixed Turbulent Combustion written by Andrei Lipatnikov and published by CRC Press. This book was released on 2012-10-24 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Book Turbulent Premixed Flames

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Book Proceedings of International Conference on Thermofluids

Download or read book Proceedings of International Conference on Thermofluids written by Shripad Revankar and published by Springer Nature. This book was released on 2020-11-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion.

Book Theoretical and Numerical Combustion

Download or read book Theoretical and Numerical Combustion written by Thierry Poinsot and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Book Proceedings of the International Conference on Modern Research in Aerospace Engineering

Download or read book Proceedings of the International Conference on Modern Research in Aerospace Engineering written by Sanjay Singh and published by Springer. This book was released on 2018-02-09 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes high-quality research papers presenting the latest advances in aerospace and related engineering fields. The papers are organized according to six broad areas (i) Aerospace Propulsion, (ii) Space Research, Avionics and Instrumentation, (iii) Aerodynamics Wind Tunnel and Computational fluid dynamics (CFD), (iv) Structural Analysis and Finite Element Method (FEM), (v) Materials, Manufacturing and Air Safety and (vi) Aircraft Environmental and Control System and Stability, making it easy for readers to find the information they require. Offering insights into the state of the art in aerospace engineering, the original research presented is valuable to academics, researchers, undergraduate and postgraduate students as well as professionals in industry and R&D. The clearly written book can be used for the validation of data, and the development of experimental and simulation techniques as well as other mathematical approaches.

Book Oxyfuel Combustion for Clean Energy Applications

Download or read book Oxyfuel Combustion for Clean Energy Applications written by Medhat A. Nemitallah and published by Springer. This book was released on 2019-02-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.

Book Recent Numerical Advances in Fluid Mechanics

Download or read book Recent Numerical Advances in Fluid Mechanics written by Omer San and published by MDPI. This book was released on 2020-07-03 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.