EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electron Correlation in Metals

Download or read book Electron Correlation in Metals written by K. Yamada and published by Cambridge University Press. This book was released on 2010-06-24 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the discovery of high Tc superconductivity, the role of electron correlation on superconductivity has been an important issue in condensed matter physics. Here the role of electron correlation in metals is explained in detail on the basis of the Fermi liquid theory. The book, originally published in 2004, discusses the following issues: enhancements of electronic specific heat and magnetic susceptibility, effects of electron correlation on transport phenomena such as electric resistivity and Hall coefficient, magnetism, Mott transition and unconventional superconductivity. These originate commonly from the Coulomb repulsion between electrons. In particular, superconductivity in strongly correlated electron systems is discussed with a unified point of view. This book is written to explain interesting physics in metals for undergraduate and graduate students and researchers in condensed matter physics.

Book Lecture Notes on Electron Correlation and Magnetism

Download or read book Lecture Notes on Electron Correlation and Magnetism written by Patrik Fazekas and published by World Scientific. This book was released on 1999 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Graduate students and researchers in condensed matter physics.

Book Electronic Structure  Correlation Effects and Physical Properties of D  and F metals and Their Compounds

Download or read book Electronic Structure Correlation Effects and Physical Properties of D and F metals and Their Compounds written by Valentin Yu Irkhin and published by Cambridge Int Science Publishing. This book was released on 2007 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes all main physical properties of d- and f-transition-metal systems and corresponding theoretical concepts. Special attention is paid to the theory of magnetism and transport phenomena. Some examples of non-traditional questions which are treated in detail in the book: the influence of density of states singularities on electron properties; many-electron description of strong itinerant magnetism; mechanisms of magnetic anisotropy; microscopic theory of anomalous transport phenomena in ferromagnets. Besides considering classical problems of solid state physics as applied to transition metals, modern developments in the theory of correlation effects in d- and f-compounds are considered within many-electron models. The book contains, where possible, a simple physical discussion. More difficult questions are considered in Appendices.

Book Lecture Notes on Electron Correlation and Magnetism

Download or read book Lecture Notes on Electron Correlation and Magnetism written by Patrik Fazekas and published by World Scientific. This book was released on 1999 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume attempts to fill the gap between standard introductions to solid state physics, and textbooks which give a sophisticated treatment of strongly correlated systems. Starting with the basics of the microscopic theory of magnetism, one proceeds with relatively elementary arguments to such topics of current interest as the Mott transition, heavy fermions, and quantum magnetism. The basic approach is that magnetism is one of the manifestations of electronOCoelectron interaction, and its treatment should be part of a general discussion of electron correlation effects. Though the text is primarily theoretical, a large number of illustrative examples are brought from the experimental literature. There are many problems, with detailed solutions. The book is based on the material of lectures given at the Diploma Course of the International Center for Theoretical Physics, Trieste, and later at the Technical University and the R. EAtvAs University of Budapest, Hungary. Sample Chapter(s). Chapter 1.1: Magnetism and Other Effects of Electron-Electron Interaction (483 KB). Chapter 1.2: Sources of Magnetic Fields (311 KB). Chapter 1.3: Getting Acquainted: Magnetite (692 KB). Chapter 1.4: Variety of Correlated Systems: An Outline of the Course (307 KB). Contents: Atoms, Ions, and Molecules; Crystal Field Theory; Mott Transition and Hubbard Model; Mott Insulators; Heinsenberg Magnets; Itinerant Electron Magnetism; Ferromagnetism in Hubbard Models; The Gutzwiller Variational Method; The Correlated Metallic State; Mixed Valence and Heavy Fermions; Quantum Hall Effect; Hydrogen Atom; Single-Spin-Flip Ansatz; Gutzwiller Approximation; SchriefferOCoWolff Transformation. Readership: Graduate students and researchers in condensed matter physics."

Book Electronic transitions and correlation effects

Download or read book Electronic transitions and correlation effects written by Johan Jönsson and published by Linköping University Electronic Press. This book was released on 2020-03-17 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers. Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds. To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method. Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored. MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons. Ett materials makroskopiska egenskaper, såsom ledningsförmåga, magnetiska egenskaper, kristallstrukturparametrar, etc. är relaterade till, eller till och med bestämda av elektronernas konfiguration, vilken karakteriseras av elektronstrukturen. Genom att ändra förhållandena, till exempel via tryck, temperatur, magnetiska och/eller elektriska fält, dopning, etc. är det möjligt att modifiera elektronstrukturen hos ett material, och därigenom inducera fasövergångar mellan olika magnetiska och elektron-tillstånd. Mott metall-till-isolator övergången är ett berömt exempel på en fasövergång, då ett material genomgår en omfattande, ofta flera tiopotenser, förändring i ledningsförmåga, orsakad av samspelet mellan ambulerande och lokaliserade laddningsbärare. Vid en elektronisk-topologisk övergång (eng. electronic topological transition, ETT) sker förändringar i elektronernas energifördelning vilket modifierar materialets Fermi-yta. I den här avhandlingen undersöks dylika övergångar i olika material, från rena grundämnen till komplicerade föreningar. Flera olika toppmoderna beräkningsmetoder används för att redogöra för samspelet mellan elektroniska fasövergångar och egenskaper hos riktiga material. Täthetsfunktionalterori (eng. density functional theory, DFT), samt DFT + U, har används för att beräkna strukturella egenskaper. Lämplighetsgraden i att använda nyligen publicerade exchangecorrelation- funktionaler, såsom SCAN (eng. strongly constrained and appropriately normed), för att beskriva magnetiska grundämnen undersöks även. För att inkludera dynamiska elektronkorrelationer använder vi metoden DFT + dynamisk medelfältteori (eng. dynamical mean field theory, DMFT). Experiment utförda på hcp-Os vid högt tryck visar underliga hopp i kvoten mellan gitterparametrar. Tidigare beräkningar har indikerat att dessa övergångar kan vara relaterade till elektronisk-topologiska övergångar och korsande av kärntillstånd. I den här avhandlingen visas också att korsning av kärntillstånden är en generell egenskap hos tunga övergångsmetaller. Därför utförs röntgenabsorptionsexperiment på Ir för att leta efter tecken på denna typ av övergång. Övergångsmetalloxiden NiO har sedan länge förutspåtts genomgå en isolator till metall Mott-övergång. Det har föreslagits att denna övergång sker vid höga tryck i samband med att materialets magnetiska ordning försvinner och en strukturell övergång sker. I samarbete med experimentalister letar vi efter denna övergång genom att studera röntgenabsorptionsspektra och det magnetiska hyperfina fältet. Vi ser inga indikationer på en Mott-övegång, upp till ett tryck på 280 GPa. Det har föreslagits att Mott-isolatorn TiPO4 genomgår en så kallad spin-Peierls-övergång, vid rumstemperatur, när tryck appliceras. Vi undersöker dimeriseringen och den magnetiska strukturen i TiPO4 som funktion av tryck. Vid höga tryck genomgår TiPO4 ytterligare övergångar, från en isolerande till en metallisk fas för att slutligen genomgå en strukturell övergång. De nya högtrycksfaserna visar sig anmärkningsvärt vara Mott-isolatorer. MAX-faser är en grupp material med specifik kristallstruktur, som kombinerar egenskaper från keramiska material och metaller. En MAX-fas består av lager av M –metall-atomer – och X – kol- eller kväveatomer – vilka sammanbinds av atomer från grupp A. Magnetiska MAX-faser som visar magnetiska egenskaper, liknande de för lågdimensionella material, är lovande kandidater för applikation inom exempelvis spinntronik. Den här avhandlingen undersöker lämplighetsgraden i att använda diverse teoretiska metoder för att beskriva magnetiska MAX-faser. Med hjälp av DFT och DFT + DMFT undersöker vi den paramagnetiska högtemperaturfasen och huruvida de magnetiska momenten bildas av lokaliserade eller ambulerande elektroner.

Book Electronic Structure and Properties of Transition Metal Compounds

Download or read book Electronic Structure and Properties of Transition Metal Compounds written by Isaac B. Bersuker and published by John Wiley & Sons. This book was released on 2010-12-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.

Book Electronically highly correlated ternary transition metal oxides

Download or read book Electronically highly correlated ternary transition metal oxides written by Alexander Krimmel and published by diplom.de. This book was released on 2005-04-15 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction: Transition metal oxides represent a large class of compounds with a uniquely wide range of electronic properties. Some of these properties, like the magnetism of loadstone, have been known since antiquity. Others, like high-temperature superconductivity have been discovered only recently and indeed would have been thought of being impossible 20 years ago. Transition metal oxides may be good insulators, semiconductors, metals or superconductors. Many of them display a metal-to-insulator transition (MIT) as a function of an external control parameter (usually temperature, pressure or chemical composition). The differences of electrical conductivity are also reflected by drastic changes of other physical properties related to the electronic structure. The electrical, magnetic and optical properties of transition metal oxides find a rich field of important technical applications. A classical example is the wide use of ferrites in electronic devices. Further examples of suitable technological applications include wide gap semiconductors, superconductors and thermoelectric materials, to mention just a few. Apart from these exciting electronic properties, some transition metal oxides exhibit a remarkable mechanical and high-temperature stability together with a strong resistance against corrosion, thus forming ideal coating materials. Several transition metal oxides may also serve as catalysts. It was the discovery of high-temperature superconductivity in the cuprates and, subsequently, of the colossal magneto-resistance effect (CMR) in the manganates that triggered a tremendous research effort in transition metal oxides during the last decade. [...]

Book Correlated Electrons In Quantum Matter

Download or read book Correlated Electrons In Quantum Matter written by Peter Fulde and published by World Scientific. This book was released on 2012-08-08 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

Book Relativistic and Electron Correlation Effects in Molecules and Solids

Download or read book Relativistic and Electron Correlation Effects in Molecules and Solids written by G.L. Malli and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, D. Reidel Publishin~ Company, Vol C133, Dordrecht, The Netherlands 1984]. However, during the last five years, it has become clear that the relativistic and electron correlation effects must be included in the theoretical treatment of many-electron molecules and solids of heavy elements (with Z > 70). Molecules and clusters containing heavy elements are of crucial importance in a number of areas of Chemistry and Physics such as nuclear fuels, catalysis, surface science, etc.

Book Band Ferromagnetism

    Book Details:
  • Author : K. Baberschke
  • Publisher : Springer Science & Business Media
  • Release : 2001-08-28
  • ISBN : 3540423893
  • Pages : 390 pages

Download or read book Band Ferromagnetism written by K. Baberschke and published by Springer Science & Business Media. This book was released on 2001-08-28 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fascinating phenomenon ferromagnetism is far from being fully understood, although it surely belongs to the oldest problems of solid state physics. For any investigation it appears recommendable to distinguish between materials whose spontaneous magnetization stems from localized electrons of a partially ?lled atomic shell and those in which it is due to itinerant electrons of a partially ?lled conduction band. In the latter case one speaks of band-ferromagnetism, prototypes of which are the classical ferromagnets Fe, Co, and Ni. The present book is a status report on the remarkable progress that has recently been made towards a microscopic understanding of band-ferromagnetism as an electron c- relation e?ect. The authors of the various chapters of this book “Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena” participated as selected - perts in the 242nd WE-Heraeus-Seminar (4-6 October 2000) held under almost the same title in Wandlitz near Berlin (Germany). It was the second seminar of this type in Wandlitz. (The ?rst in 1998 dealt with the complementary topic of the physics of local-moment ferromagnets such as Gd). Twenty-six invited spe- ers from ten di?erent countries together with ?fty-?ve further participants, who presented contributions in form of posters, spent three days together discussing in an enthusiastic and fertile manner the hot topics of band-ferromagnetism.

Book Electron Electron Correlation Effects in Low Dimensional Conductors and Superconductors

Download or read book Electron Electron Correlation Effects in Low Dimensional Conductors and Superconductors written by Alexandr A. Ovchinnikov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in the physics and chemistry of low-dimensional systems have been really magnificent in the last few decades. Hundreds of quasi-one-dimensional and quasi-two-dimensional systems have been synthesized and studied. The most popular representatives of quasi-one-dimensional materials are polyacethylenes CH [1] and conducting donor-acceptor molecular crystals TIF z TCNQ. Examples of quasi-two-dimensional systems are high temperature su perconductors (HTSC) based on copper oxides LA2CU04, YBa2Cu306+y and organic superconductors based on BEDT -TIP molecules. The properties of such one- and two-dimensional materials are not yet fully understood. On the one hand, the equations of motion of one-dimensional sys tems are rather simple, which facilitates rigorous solutions of model problems. On the other hand, manifestations of various interactions in one-dimensional systems are rather peculiar. This refers, in particular, to electron--electron and electron-phonon interactions. Even within the limit of a weak coupling con stant electron--electron correlations produce an energy gap in the spectrum of one-dimensional metals implying a Mott transition from metal to semiconductor state. In all these cases perturbation theory is inapplicable. Which is one of the main difficulties on the way towards a comprehensive theory of quasi-one-dimensional systems. - This meeting held at the Institute for Theoretical Physics in Kiev May 15-18 1990 was devoted to related problems. The papers selected for this volume are grouped into three sections.

Book Potential Energy Surfaces and Dynamics Calculations

Download or read book Potential Energy Surfaces and Dynamics Calculations written by Donald Truhlar and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is concerned with two of the central questions of chemical dynamics. What do we know about the energies of interaction of atoms and molecules with each other and with solid surfaces? How can such interaction energies be used to understand and make quantitative predictions about dynamical processes like scattering, energy transfer, and chemical reactions? It is becoming clearly recognized that the computer is leading to rapid progress in answering these questions. The computer allows probing dynamical mechanisms in fine detail and often allows us to answer questions that cannot be addressed with current experimental techniques. As we enter the 1980's, not only are more powerful and faster computers being used, but techniques and methods have been honed to a state where exciting and reliable data are being generated on a variety of systems at an unprecedented pace. The present volume presents a collection of work that illustrates the capabilities and some of the successes of this kind of computer-assisted research. In a 1978 Chemical Society Report, Frey and Walsh pointed out that "it is extremely doubtful if a calculated energy of activation for any unimolecular decomposition can replace an experimental deter mination. " However they also recorded that they "believe[d] that some of the elaborate calculations being performed at present do suggest that we may be approaching a time when a choice between reaction mechanisms will be helped by such [computational] work.

Book The Hubbard Model

    Book Details:
  • Author : Dionys Baeriswyl
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489910425
  • Pages : 408 pages

Download or read book The Hubbard Model written by Dionys Baeriswyl and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).

Book The Organometallic Chemistry of the Transition Metals

Download or read book The Organometallic Chemistry of the Transition Metals written by Robert H. Crabtree and published by John Wiley & Sons. This book was released on 2005-06-14 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.

Book Electron Correlation in Molecules and Condensed Phases

Download or read book Electron Correlation in Molecules and Condensed Phases written by Norman H. March and published by Springer Science & Business Media. This book was released on 1996-10-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids. The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations. With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students.

Book Physics of Transition Metal Oxides

Download or read book Physics of Transition Metal Oxides written by Sadamichi Maekawa and published by Springer Science & Business Media. This book was released on 2004-06-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.

Book Gas Phase Metal Reactions

Download or read book Gas Phase Metal Reactions written by A. Fontijn and published by Elsevier. This book was released on 2017-05-04 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book brings together, for the first time, all aspects of reactions of metallic species in the gas phase and gives an up-to-date overview of the field. Reactions covered include those of atomic, other free radical and transient neutral species, as well as ions. Experimental and theoretical work is reviewed and the efforts to establish a closer link between these approaches are discussed. The field is mainly approached from a fundamental point-of-view, but the applied problems which have helped stimulate the interest are pointed out and form the major subject of the final chapters. These emphasize the competition between purely gas-phase and gas-surface reactions.