EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electrical Characterization of Thin Film CdTe Solar Cells

Download or read book Electrical Characterization of Thin Film CdTe Solar Cells written by Darshini Desai and published by . This book was released on 2007 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic device modeling results obtained using AMPS (Analysis of microelectronic and photonic structures) suggest that the dominant recombination mechanism is the SRH recombination through midgap states.

Book Advanced Characterization of Thin Film Solar Cells

Download or read book Advanced Characterization of Thin Film Solar Cells written by Mowafak Al-Jassim and published by Institution of Engineering and Technology. This book was released on 2020-09-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline thin-film solar cells have reached a levelized cost of energy that is competitive with all other sources of electricity. The technology has significantly improved in recent years, with laboratory cell efficiencies for cadmium telluride (CdTe), perovskites, and copper indium gallium diselenide (CIGS) each exceeding 22 percent. Both CdTe and CIGS solar panels are now produced at the gigawatt scale. However, there are ongoing challenges, including the continued need to improve performance and stability while reducing cost. Advancing polycrystalline solar cell technology demands an in-depth understanding of efficiency, scaling, and degradation mechanisms, which requires sophisticated characterization methods. These methods will enable researchers and manufacturers to improve future solar modules and systems.

Book Spatially Resolved Characterization in Thin Film Photovoltaics

Download or read book Spatially Resolved Characterization in Thin Film Photovoltaics written by Matevž Bokalič and published by Springer. This book was released on 2015-01-22 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the spatial characterization of solar cells and PV modules. It is written both as a monograph as well as a succinct guide for the state-of-the-art spatial characterization techniques and approaches. Amongst the approaches discussed are visual imaging, electro- and photo-luminescence imaging, thermography, and light beam induced mapping techniques. Emphasis is given on the luminescence image acquisition and interpretation due to its great potential. Characterization techniques are accompanied by simulation tools. The contents are aimed at a readership of students and senior researchers in R&D as well as engineers in industry who are newcomers to the spatial characterization of either solar cells or PV modules. The concepts and approaches presented herein are based on but not limited to case studies of real thin-film PV devices. Key features:  Review of spatially resolved characterization techniques and accompanying SPICE simulations in photovoltaics  Use of spatially resolved characterization techniques and their combinations for the identification of inhomogeneities in small area CdTe and dye-sensitized solar cells  Case studies of electroluminescence imaging of commercial PV modules (c-Si, CIGS, CdTe, a-Si, tandem and triple junction thin-film-Si) The contents are aimed at a readership of students and senior researchers in R&D as well as engineers in industry who are newcomers to the spatial characterization of either solar cells or PV modules. The concepts and approaches presented herein are based on but not limited to case studies of real thin-film PV devices. Key features:  Review of spatially resolved characterization techniques and accompanying SPICE simulations in photovoltaics  Use of spatially resolved characterization techniques and their combinations for the identification of inhomogeneities in small area CdTe and dye-sensitized solar cells  Case studies of electroluminescence imaging of commercial PV modules (c-Si, CIGS, CdTe, a-Si, tandem and triple junction thin-film-Si)

Book Characterization of Electrical Properties of Thin film Solar Cells

Download or read book Characterization of Electrical Properties of Thin film Solar Cells written by Rasha A. Awni and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic (PV) solar cells have attracted great attention because of the demand for low cost renewable energy sources. Detailed information on electronic properties, such as doping, defects, gap states...etc, must be fully understood to develop the technology of solar cells. Here, we report the fundamental electronic properties of two distinct materials systems, one is based on polycrystalline cadmium telluride (CdTe) and the other is lead-halide perovskite solar cells. This investigation provides useful information to understand the fundamental nature of single junction solar cell device and material. First, we investigate the impact of back surface treatment method for cadmium sulfide (CdS)/CdTe solar cells using hydroiodic acid (HI) etching to provide an appropriate electrical back contact. The structural properties of CdTe films and electrical properties of the CdTe absorber and interfaces are characterized. Using capacitance-based techniques with the support of current-voltage measurements, we show that the barrier height of the back contact is reduced, apparent doping concentration is increased, and a defect level at 0.409eV is eliminated after the HI-treatment. More importantly, the CdTe device performance is improved. This improvement is still limited by many factors. One factor is the device window layer that limits the current generation. Therefore, we replaced CdS layer by wide bandgap material, ZnMgO (ZMO). We noticed that the electrical properties of CdS/CdTe and ZMO/CdTe solar cells depend on both buffer material and the fabrication atmosphere. Using capacitance spectroscopy-based techniques, we show that CdS/CdTe solar cells have negligible front contact barriers regardless of the fabrication atmospher, while ZMO/CdTe devices show obvious front barriers are dependent on the fabrication atmosphere. Both CdS/CdTe and ZMO/CdTe solar cells have significant back contact barriers. Additionally, we find that the energy level of defects in CdS/CdTe cells is shallower than in ZMO/CdTe cells. These results provide deep insights for understanding and optimizing the performance of CdTe thin-film solar cells. Then, we explored the electrical properties of halide perovskite solar cells (PSCs) that can be deduced by capacitance-based techniques, such as defect activation energy and density, carrier concentration, and dielectric constant. However, we find that these techniques cannot reliably be used to characterize the properties of the defects in the perovskite layer or at its interface. We find that the high-frequency capacitance signature is due to the response of charge carriers in the hole-transport layer (HTL), not in the perovskite layer. In HTL-free PSCs, from the capacitance spectra at high-frequency, the geometric capacitance can be determined and can be used to calculate the dielectric constant of perovskite layers. We also find an overlapping effect with the charge transport layers at the low-frequency capacitance signature in planner PSCs, thus, it cannot be used to analyze the defect properties. However, in the inverted structure PSCs, the low-frequency capacitance signature can be used to calculate the activation energy of the ionic conductivity of the perovskite layer.

Book Electrical Characterization of Cu Composition Effects in CdS CdTe Thin Film Solar Cells with a ZnTe Cu Back Contact  Preprint

Download or read book Electrical Characterization of Cu Composition Effects in CdS CdTe Thin Film Solar Cells with a ZnTe Cu Back Contact Preprint written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at0.55 eV whose concentration is significant when the Cu concentration ishigh. The device performance, which initially increases with Cu concentration then decreases, reflects the interplay between the positive influences and negative influences (increasing deep levels in CdTe) of Cu.

Book Thin Film Solar Cells From Earth Abundant Materials

Download or read book Thin Film Solar Cells From Earth Abundant Materials written by Subba Ramaiah Kodigala and published by Newnes. This book was released on 2013-11-14 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. - One of the first books exploring how to conduct research on thin film solar cells, including reducing costs - Detailed instructions on conducting research

Book Electrical Characterization of CdTe Grain boundary Properties from As processed CdTe CdS Solar Cells

Download or read book Electrical Characterization of CdTe Grain boundary Properties from As processed CdTe CdS Solar Cells written by Lawrence M. Woods and published by . This book was released on 1998 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Characterization Techniques for Thin Film Solar Cells

Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Daniel Abou-Ras and published by John Wiley & Sons. This book was released on 2016-07-13 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Book Electrical and optical characterization of CdxZn1 xS and PbS thin films for photovoltaic applications

Download or read book Electrical and optical characterization of CdxZn1 xS and PbS thin films for photovoltaic applications written by Cliff Orori Mosiori and published by GRIN Verlag. This book was released on 2014-08-12 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master's Thesis from the year 2011 in the subject Physics - Applied physics, grade: A, Kenyatta University, course: Master of Science ( Physics), language: English, abstract: In this research an n-type CdxZn1-xS and p-type PbS thin films were optimised for solar cell applications employing chemical bath deposition technique. The thin films were prepared using thiourea and nitrates of cadmium, zinc and lead. Deposition of optimised CdxZn1-xS was done by CBD at 820 C and in alkaline conditions while that of PbS was done at room temperature and both films at normal atmospheric pressure utilizing aqueous conditions. This study concentrated on optimising optical and electrical characterization of the films. Optical constant suitable for photovoltaic applications were sort for and for this purpose a UV VIS IR spectrophotometer 3700 DUV was utilised while the electrical properties were investigated using a four point probe connected to a Keithley 2400 source meter interfaced with computer. The optical band gap of the as deposited CdxZn1-xS films varied from 2.47eV (x =0.6) to 2.72 eV (x =1.0), and transmittance above 79% in the VIS - NIR region for the concentration range of x = 0.6 to 1.0, that is, the band gap increased with increasing Zn concentration of the alloy and Cd06Zn0.4S sample showed the widest band gap. It was obtained that the presence of zinc increased optical band gap. The average extinction coefficients for the as deposited CdxZn1-xS samples were very low revealing that they absorb very little radiation hence a good window layer material. As measured by the four point probe connected to a Keithley 2400 source meter, electrical resistivity increased with increase in Zn in the bath in CdxZn1-xS and a resistivity range of 9.5×101 – 1.22× 102 Ω-cm was obtained. These properties are appropriate for window layers used for photovoltaic cell applications. PbS thin films had a band gap of 0.89 eV and a transmittance of below 55% appropriate for absorber layers of photovoltaic cells and a resistivity range of 6.78 × 103 to 1.26 × 104 Ω-cm. The fabricated photovoltaic cell had a short circuit current, Isc = 0.031 A, open voltage, Voc = 0.37V, efficiency, η = 0.9% and a fill factor, FF = 0.66 implying that the two materials are appropriate for photovoltaic applications especially in the VIS and IR light spectrum.

Book Solar Cells and Modules

    Book Details:
  • Author : Arvind Shah
  • Publisher : Springer Nature
  • Release : 2020-07-16
  • ISBN : 3030464873
  • Pages : 357 pages

Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Electrical Characterization of Etched Grain Boundary Properties from As Processed Px CdTe Based Solar Cells

Download or read book Electrical Characterization of Etched Grain Boundary Properties from As Processed Px CdTe Based Solar Cells written by and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ability to lift off or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. We use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more-accurate two-dimensional models for polycrystalline CdTe solar cells.

Book Electrical Characterization of Cu Composition Effects in CdS CdTe Thin Film Solar Cells with a ZnTe

Download or read book Electrical Characterization of Cu Composition Effects in CdS CdTe Thin Film Solar Cells with a ZnTe written by and published by . This book was released on 2012 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at ≈0.55 eV whose concentration is significant when the Cu concentration is high. The device performance, which initially increases with Cu concentration then decreases, reflects the interplay between the positive influences and negative influences (increasing deep levels in CdTe) of Cu.

Book Coatings and Thin Film Technologies

Download or read book Coatings and Thin Film Technologies written by Jaime Andres Perez Taborda and published by BoD – Books on Demand. This book was released on 2019-01-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.

Book Thin Films Photovoltaics

Download or read book Thin Films Photovoltaics written by Beddiaf Zaidi and published by BoD – Books on Demand. This book was released on 2022-02-23 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film photovoltaic-based solar modules produce power at a low cost per watt. They are ideal candidates for large-scale solar farms as well as building-integrated photovoltaic applications. They can generate consistent power, not only at elevated temperatures but also on cloudy, overcast days and at low sun angles.Thin film photovoltaics are second-generation solar cells produced by depositing one or more thin layers, or thin films, of photosensitive material on a suitable substrate such as glass, polymer, or metal. Thin film solar cells are based on various materials such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin film silicon (a-Si, TF-Si) are commercially used in several conventional and advanced technologies.

Book Electrical and Electronic Devices  Circuits  and Materials

Download or read book Electrical and Electronic Devices Circuits and Materials written by Suman Lata Tripathi and published by John Wiley & Sons. This book was released on 2021-03-24 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demand for electronic devices for private and industrial purposes lead designers and researchers to explore new electronic devices and circuits that can perform several tasks efficiently with low IC area and low power consumption. In addition, the increasing demand for portable devices intensifies the call from industry to design sensor elements, an efficient storage cell, and large capacity memory elements. Several industry-related issues have also forced a redesign of basic electronic components for certain specific applications. The researchers, designers, and students working in the area of electronic devices, circuits, and materials sometimesneed standard examples with certain specifications. This breakthrough work presents this knowledge of standard electronic device and circuit design analysis, including advanced technologies and materials. This outstanding new volume presents the basic concepts and fundamentals behind devices, circuits, and systems. It is a valuable reference for the veteran engineer and a learning tool for the student, the practicing engineer, or an engineer from another field crossing over into electrical engineering. It is a must-have for any library.