EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Discontinuous Galerkin Finite Element Method with Anisotropic Local Grid Refinement for Inviscid Compressible Flows

Download or read book Discontinuous Galerkin Finite Element Method with Anisotropic Local Grid Refinement for Inviscid Compressible Flows written by J. J. W. van der Vegt and published by . This book was released on 1997 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discontinuous Galerkin Method

Download or read book Discontinuous Galerkin Method written by Vít Dolejší and published by Springer. This book was released on 2015-07-17 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows

Download or read book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows written by J. J. W. van der Vegt and published by . This book was released on 1998 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Aspects of Discontinuous Galerkin Methods

Download or read book Mathematical Aspects of Discontinuous Galerkin Methods written by Daniele Antonio Di Pietro and published by Springer Science & Business Media. This book was released on 2011-11-03 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.

Book Godunov Methods

    Book Details:
  • Author : E.F. Toro
  • Publisher : Springer Science & Business Media
  • Release : 2001-12-31
  • ISBN : 9780306466014
  • Pages : 1100 pages

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2001-12-31 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford, in October 1999, to commemorate the 70th birthday of the Russian mathematician Sergei K. Godunov. The central theme of this book is numerical methods for hyperbolic conservation laws following Godunov's key ideas contained in his celebrated paper of 1959. Hyperbolic conservation laws play a central role in mathematical modelling in several distinct disciplines of science and technology. Application areas include compressible, single (and multiple) fluid dynamics, shock waves, meteorology, elasticity, magnetohydrodynamics, relativity, and many others. The successes in the design and application of new and improved numerical methods of the Godunov type for hyperbolic conservation laws in the last twenty years have made a dramatic impact in these application areas. The 97 papers cover a very wide range of topics, such as design and analysis of numerical schemes, applications to compressible and incompressible fluid dynamics, multi-phase flows, combustion problems, astrophysics, environmental fluid dynamics, and detonation waves. This book will be a reference book on the subject of numerical methods for hyperbolic partial differential equations for many years to come.All contributions are self-contained but do contain a review element. There is a key paper by Peter Sweby in which a general overview of Godunov methods is given. This contribution is particularly suitable for beginners on the subject. This book is unique: it contains virtually everything concerned with Godunov-type methods for conservation laws. As such it will be of particular interest to academics (applied mathematicians, numerical analysts, engineers, environmental scientists, physicists, and astrophysicists) involved in research on numerical methods for partial differential equations; scientists and engineers concerned with new numerical methods and applications to scientific and engineering problems e.g., mechanical engineers, aeronautical engineers, meteorologists; and academics involved in teaching numerical methods for partial differential equations at the postgraduate level.

Book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows

Download or read book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows written by J. J. W. van der Vegt and published by . This book was released on 2002 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Butterworth-Heinemann. This book was released on 2015-04-23 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques

Book Parallel Computational Fluid Dynamics 2001  Practice and Theory

Download or read book Parallel Computational Fluid Dynamics 2001 Practice and Theory written by P. Wilders and published by Elsevier. This book was released on 2002-04-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: ParCFD 2001, the thirteenth international conference on Parallel Computational Fluid Dynamics took place in Egmond aan Zee, the Netherlands, from May 21-23, 2001. The specialized, high-level ParCFD conferences are organized yearly on traveling locations all over the world. A strong back-up is given by the central organization located in the USA http://www.parcfd.org.These proceedings of ParCFD 2001 represent 70% of the oral lectures presented at the meeting. All published papers were subjected to a refereeing process, which resulted in a uniformly high quality.The papers cover not only the traditional areas of the ParCFD conferences, e.g. numerical schemes and algorithms, tools and environments, interdisciplinary topics, industrial applications, but, following local interests, also environmental and medical issues. These proceedings present an up-to-date overview of the state of the art in parallel computational fluid dynamics.

Book Parallel Computational Fluid Dynamics  97

Download or read book Parallel Computational Fluid Dynamics 97 written by D. Emerson and published by Elsevier. This book was released on 1998-04-17 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is a discipline that has always been in the vanguard of the exploitation of emerging and developing technologies. Advances in both algorithms and computers have rapidly been absorbed by the CFD community in its quest for more accurate simulations and reductions in the time to solution. Within this context, parallel computing has played an increasingly important role. Moreover, the uptake of parallel computing has brought the CFD community into ever-closer contact with hardware vendors and computer scientists. The multidisciplinary subject of parallel CFD and its rapidly evolving nature, in terms of hardware and software, requires a regular international meeting of this nature to keep abreast of the most recent developments. Parallel CFD '97 is part of an annual conference series dedicated to the discussion of recent developments and applications of parallel computing in the field of CFD and related disciplines. This was the 9th in the series, and since the inaugural conference in 1989, many new developments and technologies have emerged. The intervening years have also proved to be extremely volatile for many hardware vendors and a number of companies appeared and then disappeared. However, the belief that parallel computing is the only way forward has remained undiminished. Moreover, the increasing reliability and acceptance of parallel computers has seen many commercial companies now offering parallel versions of their codes, many developed within the EC funded EUROPORT activity, but generally for more modest numbers of processors. It is clear that industry has not moved to large scale parallel systems but it has shown a keen interest in more modest parallel systems recognising that parallel computing will play an important role in the future. This book forms the proceedings of the CFD '97 conference, which was organised by the the Computational Engineering Group at Daresbury Laboratory and held in Manchester, England, on May 19-21 1997. The sessions involved papers on many diverse subjects including turbulence, reactive flows, adaptive schemes, unsteady flows, unstructured mesh applications, industrial applications, developments in software tools and environments, climate modelling, parallel algorithms, evaluation of computer architectures and a special session devoted to parallel CFD at the AEREA research centres. This year's conference, like its predecessors, saw a continued improvement in both the quantity and quality of contributed papers. Since the conference series began many significant milestones have been acheived. For example in 1994, Massively Parallel Processing (MPP) became a reality with the advent of Cray T3D. This, of course, has brought with it the new challenge of scalability for both algorithms and architectures. In the 12 months since the 1996 conference, two more major milestones were achieved: microprocessors with a peak performance of a Gflop/s became available and the world's first Tflop/s calculation was performed. In the 1991 proceedings, the editors indicated that a Tflop/s computer was likely to be available in the latter half of this decade. On December 4th 1996, Intel achieved this breakthrough on the Linpack benchmark using 7,264 (200MHz) Pentium Pro microprocessors as part of the ASCI Red project. With the developments in MPP, the rapid rise of SMP architectures and advances in PC technology, the future for parallel CFD looks both promising and challenging.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Performance Computing and Networking

Download or read book High Performance Computing and Networking written by Peter Sloot and published by Springer Science & Business Media. This book was released on 1998-04-15 with total page 1068 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings -- Parallel Computing.

Book High order Hybridizable Discontinuous Galerkin Method for Viscous Compressible Flows

Download or read book High order Hybridizable Discontinuous Galerkin Method for Viscous Compressible Flows written by Mostafa Javadzadeh Moghtader and published by . This book was released on 2017 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is an essential tool for engineering design and analysis, especially in applications like aerospace, automotive and energy industries. Nowadays most commercial codes are based on Finite Volume (FV) methods, which are second order accurate, and simulation of viscous compressible flow around complex geometries is still very expensive due to large number of low-order elements required. One the other hand, some sophisticated physical phenomena, like aeroacoustics, vortex dominated flows and turbulence, need very high resolution methods to obtain accurate results. High-order methods with their low spatial discretization errors, are a possible remedy for shortcomings of the current CFD solvers. Discontinuous Galerkin (DG) methods have emerged as a successful approach for non-linear hyperbolic problems and are widely regarded very promising for next generation CFD solvers. Their efficiency for high-order discretization makes them suitable for advanced physical models like DES and LES, while their stability in convection dominated regimes is also a merit of them. The compactness of DG methods, facilitate the parallelization and their element-by-element discontinuous nature is also helpful for adaptivity. This PhD thesis focuses on the development of an efficient and robust high-order Hybridizable Discontinuous Galerkin (HDG) Finite Element Method (FEM) for compressible viscous flow computations. HDG method is a new class of DG family which enjoys from merits of DG but has significantly less globally coupled unknowns compared to other DG methods. Its features makes HDG a possible candidate to be investigated as next generation high-order tools for CFD applications. The first part of this thesis recalls the basics of high-order HDG method. It is presented for the two-dimensional linear convection-diffusion equation, and its accuracy and features are investigated. Then, the method is used to solve compressible viscous flow problems modelled by non-linear compressible Navier-Stokes equations; and finally a new linearized HDG formulation is proposed and implemented for that problem, all using high-order approximations. The accuracy and efficiency of high-order HDG method to tackle viscous compressible flow problems is investigated, and both steady and unsteady solvers are developed for this purpose. The second part is the core of this thesis, proposing a novel shock-capturing method for HDG solution of viscous compressible flow problems, in the presence of shock waves. The main idea is to utilize the stabilization of numerical fluxes, via a discontinuous space of approximation inside the elements, to diminish or remove the oscillations in the vicinity of discontinuity. This discontinuous nodal basis functions, leads to a modified weak form of the HDG local problem in the stabilized elements. First, the method is applied to convection-diffusion problems with Bassi-Rebay and LDG fluxes inside the elements, and then, the strategy is extended to the compressible Navier-Stokes equations using LDG and Lax-Friedrichs fluxes. Various numerical examples, for both convection-diffusion and compressible Navier-Stokes equations, demonstrate the ability of the proposed method, to capture shocks in the solution, and its excellent performance in eliminating oscillations is the vicinity of shocks to obtain a spurious-free high-order solution.

Book Anisotropic Grid Refinement Using an Unstructured Discontinuous Galerkin Method for the Three dimensional Euler Equations of Gas Dynamics

Download or read book Anisotropic Grid Refinement Using an Unstructured Discontinuous Galerkin Method for the Three dimensional Euler Equations of Gas Dynamics written by J. J. W. van der Vegt and published by . This book was released on 1996 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: