Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer. This book was released on 2010-10-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer Science & Business Media. This book was released on 2006-06-29 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.
Download or read book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations written by Xiaobing Feng and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.
Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Second Edition written by J. N. Reddy and published by CRC Press. This book was released on 2000-12-20 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.
Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?
Download or read book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method written by Abdul A. Khan and published by CRC Press. This book was released on 2014-03-03 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.
Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.
Download or read book Free Surface Flow written by Nikolaos D. Katopodes and published by Butterworth-Heinemann. This book was released on 2018-10-31 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free-Surface Flow: Computational Methods presents a detailed analysis of numerical schemes for shallow-water waves. It includes practical applications for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow. Closure models for turbulence, such as Reynolds-Averaged Navier-Stokes and Large Eddy Simulation are presented, coupling the aforementioned surface tracking techniques with environmental fluid dynamics. While many computer programs can solve the partial differential equations describing the dynamics of fluids, many are not capable of including free surfaces in their simulations. - Provides numerical solutions of the turbulent Navier-Stokes equations in three space dimensions - Includes closure models for turbulence, such as Reynolds-Averaged Navier-Stokes, and Large Eddy Simulation - Practical applications are presented for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow
Download or read book Building Bridges Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations written by Gabriel R. Barrenechea and published by Springer. This book was released on 2016-10-03 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.
Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Butterworth-Heinemann. This book was released on 2015-04-23 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques
Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Download or read book Materials Characterisation VI written by C. A. Brebbia and published by WIT Press. This book was released on 2013 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains papers to be presented at the Sixth International Conference on the topic. Materials modelling and characterisation have become ever more closely intertwined. Characterisation, in essence, connects the abstract material model with the real-world behaviour of the material in question. Characterisation of complex materials often requires a combination of experimental and computational techniques. The conference is convened biennially to facilitate the sharing of recent work between researchers who use computational methods, those who perform experiments, and those who do both, in all areas of materials characterisation.The papers cover such topics as: Computational models and experiments; Mechanical characterisation and testing; Micro and macro materials characterisation; Corrosion problems; Innovative experimental technologies; Recycled materials; Thermal analysis; Advances in composites; Cementitious materials; Structural health monitoring; Energy materials.
Download or read book Computational and Experimental Simulations in Engineering written by Honghua Dai and published by Springer Nature. This book was released on 2022-08-23 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 27th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held online on January 8-12, 2022. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
Download or read book Computational Fluid Dynamics written by John Wendt and published by Springer Science & Business Media. This book was released on 2008-11-04 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.
Download or read book Recent Advances in Computational Engineering written by Michael Schäfer and published by Springer. This book was released on 2018-08-21 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the proceedings of the 4th International Conference on Computational Engineering (ICCE 2017), held in Darmstadt, Germany on September 28-29, 2017. The conference is intended to provide an interdisciplinary meeting place for researchers and practitioners working on computational methods in all disciplines of engineering, applied mathematics and computer science. The aims of the conference are to discuss the state of the art in this challenging field, exchange experiences, develop promising perspectives for future research and initiate further cooperation. Computational Engineering is a modern and multidisciplinary science for computer-based modeling, simulation, analysis, and optimization of complex engineering applications and natural phenomena. The book contains an overview of selected approaches from numerics and optimization of Partial Differential Equations as well as uncertainty quantification techniques, typically in multiphysics environments. Where possible, application cases from engineering are integrated. The book will be of interest to researchers and practitioners of Computational Engineering, Applied Mathematics, Engineering Sciences and Computer Science.