EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC DC Microgrids

Download or read book Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC DC Microgrids written by Morteza Daviran Keshavarzi and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid microgrids (HMGs) that incorporate the functionalities of both AC and DC load/generation systems are gradually evolving from the concept stage to real-world practice. HMGs can reduce power losses due to decreased requirement of conversions from AC to DC and vice versa. HMGs, particularly in islanded operations, are prone to instability and power fluctuations due to the intermittent nature of renewable energy sources (RES) and the stochastic behavior of the loads. It is imperative to damp system oscillations with faster dynamics and reliable controllers. Converter-interfaced energy storage systems (ESS) are well demonstrated to be the most reliable, technically feasible, and economically viable solutions to manage volt-age/frequency deviations and to enhance the dynamic performance of microgrids.The problem of control and power management of microgrids has been well studied in recent years, and various methodologies have been proposed. However, there are technological gaps in the HMGs are yet to be addressed. This dissertation aims to develop robust control solutions to enhance the resiliency and stability of hybrid AC/DC microgrids against grid disturbances.Among all ESS, the battery energy storage system (BESS) is the most cost-effective and widely accepted technology. This work explores the influence of the BESS operation and proposes novel methodologies to improve the fault ride-through (FRT) capability and disturbance resiliency of microgrids involving complex dynamics characteristics. In addition, this study proposes a novel bidirectional DC-DC converter for energy storage applications in DC and hybrid microgrids. The new converter has a symmetrical configuration that allows designing one controller for both directions. The design approach is based on the linearization and frequency response of the system.Furthermore, a new grid-connected photovoltaic-supercapacitor (PV-SC) energy storage system is proposed where a minimum number of power components are used to implement both functionalities. The proposed PV-SC system improves the dynamic performance of the connected grid system during the daytime, nighttime, and cloudy situations.Appropriate design methodologies and mathematical models have been developed in simulation environments with the maximum possible details to obtain the highest accuracy for linearized models. Simulation results demonstrate the validity and effectiveness of the proposed approaches and show better performance than conventional methods..

Book Microgrid Dynamics and Control

Download or read book Microgrid Dynamics and Control written by Hassan Bevrani and published by John Wiley & Sons. This book was released on 2017-07-17 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses relevant microgrid technologies in the context of integrating renewable energy and also addresses challenging issues. The authors summarize long term academic and research outcomes and contributions. In addition, this book is influenced by the authors’ practical experiences on microgrids (MGs), electric network monitoring, and control and power electronic systems. A thorough discussion of the basic principles of the MG modeling and operating issues is provided. The MG structure, types, operating modes, modelling, dynamics, and control levels are covered. Recent advances in DC microgrids, virtual synchronousgenerators, MG planning and energy management are examined. The physical constraints and engineering aspects of the MGs are covered, and developed robust and intelligent control strategies are discussed using real time simulations and experimental studies.

Book Risk Based Energy Management

Download or read book Risk Based Energy Management written by Sayyad Nojavan and published by Academic Press. This book was released on 2019-07-20 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk-Based Energy Management: DC, AC and Hybrid AC-DC Microgrids defines the problems and challenges of DC, AC and hybrid AC-DC microgrids and considers the right tactics and risk-based scheduling to tackle them. The book looks at the intermittent nature of renewable generation, demand and market price with the risk to DC, AC and hybrid AC-DC microgrids, which makes it relevant for anyone in renewable energy demand and supply. As utilization of distributed energy resources and the intermittent nature of renewable generations, demand and market price can put the operation of DC, AC and hybrid AC-DC microgrids at risk, this book presents a timely resource. Discusses both the challenges and solutions surrounding DC, AC and hybrid AC-DC microgrids Proposes robust scheduling of DC, AC and hybrid AC-DC microgrids under uncertain environments Includes modeling upstream grid prices, renewable resources and intermittent load in the decision-making process of DC, AC and hybrid AC-DC microgrids

Book Development and Integration of Microgrids

Download or read book Development and Integration of Microgrids written by Wenping Cao and published by BoD – Books on Demand. This book was released on 2017-08-16 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of AC or DC microgrids across the world has increased dramatically over the years and has led to development opportunities as well as technical challenges when they are connected to the main grids or used as stand-alone systems. This book overviews the development of AC/DC microgrids; explains the microgrid concepts, design and control considerations, discusses operational and technical issues, as well as interconnection and integration of these systems. This book is served as a reference for a general audience of researchers, academics, PhD students and practitioners in the field of power engineering.

Book Smart Hybrid AC DC Microgrids

Download or read book Smart Hybrid AC DC Microgrids written by Yunwei Ryan Li and published by John Wiley & Sons. This book was released on 2022-08-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: SMART HYBRID AC/DC MICROGRIDS Addresses the technical aspects and implementation challenges of smart hybrid AC/DC microgrids Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control provides comprehensive coverage of interconnected smart hybrid microgrids, their different structures, and the technical issues associated with their control and implementation in the next generation of smart grids. This authoritative single-volume resource addresses smart hybrid microgrids power management, energy management, communications, power converter control, power quality, renewable generation integration, energy storage, and more. The book contains both basic and advanced technical information about smart hybrid AC/DC microgrids, featuring a detailed discussion of microgrid structures, communication technologies, and various configurations of interfacing power converters and control strategies. Numerous case studies highlight effective solutions for critical issues in hybrid microgrid operation, control and power quality compensation throughout the text. Topics include control strategies of renewable energy and energy storage interfacing converters in hybrid microgrids, supervisory control strategies of interfacing power converters for microgrid power management and energy microgrid, and smart interfacing power converters for power quality control. This volume: Includes a thorough overview of hybrid AC/DC microgrid concepts, structures, and applications Discusses communication and security enhancement techniques for guarding against cyberattacks Provides detailed controls of smart interfacing power electronics converters from distributed generations and energy storage systems in hybrid AC/DC microgrids Provides details on transient and steady-state power management systems in microgrids Discusses energy management systems, hierarchical control, multi-agent control, and advanced distribution management control of smart microgrids Identifies opportunities to control power quality with smart interfacing power electronic converters Addresses power quality issues in the context of real-world applications in data centers, electric railway systems, and electric vehicle charging stations Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control is a valuable source of up-to-date information for senior undergraduate and graduate students as well as academic researchers and industry engineers in the areas of renewable energy, smart grids, microgrids, and power electronics.

Book Integration of AC DC Microgrids into Power Grids

Download or read book Integration of AC DC Microgrids into Power Grids written by Fazel Mohammadi and published by MDPI. This book was released on 2020-12-02 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmental-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems.

Book Microgrids

    Book Details:
  • Author : Josep M. Guerrero
  • Publisher : Academic Press
  • Release : 2021-10-21
  • ISBN : 0323854648
  • Pages : 270 pages

Download or read book Microgrids written by Josep M. Guerrero and published by Academic Press. This book was released on 2021-10-21 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microgrids: Modeling, Control, and Applications presents a systematic elaboration of different types of microgrids, with a particular focus on new trends and applications. The book includes sections on AC, DC and hybrid AC/DC microgrids and reflects state-of-the-art developments, covering theory, algorithms, simulations, error and uncertainty analysis, as well as novel applications of new control techniques. Offering a valuable resource for students and researchers working on the integration of renewable energy with existing grid and control of microgrids, this book combines recent advances and ongoing research into a single informative resource. The book highlights recent findings while also analyzing modelling and control, thus making it a solid reference for researchers as well as undergraduate and postgraduate students. Covers different types of microgrids and their architecture and control in a single book Includes original, state-of-the-art research contributions by international experts Features global case studies for better understanding and real-life examples

Book Dynamics  Robust Control  and Power Management of Voltage source Converters in Hybrid Multiterminal AC DC Grids

Download or read book Dynamics Robust Control and Power Management of Voltage source Converters in Hybrid Multiterminal AC DC Grids written by Masoud Davari and published by . This book was released on 2016 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electric energy sector is moving toward extensive integration of clean and renewable energy sources, energy storage units, and modern loads via highly efficient and flexible multiterminal dc grids integrated within the traditional ac grid infrastructure in both transmission and distribution levels. A voltage-source converter (VSC) is the main technology enabling the interconnection of dc and ac grids. In such demanding applications, effective and robust integration of ac and dc grids, in the presence of coupling nonlinear dynamics, parametric uncertainties, and disturbances, is crucial to maintain the stability and robust performance of the overall ac/dc dynamic system. Motivated by this objective, this thesis addresses the dynamics, robust control, and power management of VSCs in hybrid multiterminal ac/dc grids. Firstly, a robust multi-objective dc-link voltage controller is developed for a bi-directional VSC regulating the dc-link voltage of a multiterminal dc grid; i.e., the VSC operates as a dc-voltage power-port. The proposed controller ensures excellent tracking performance, robust disturbance rejection, and robust stability against operating point and parameter variation with a simple fixed-parameter low-order controller. Secondly, the dynamics and control of VSCs considering the instantaneous power of both ac- and dc-side filters and dc grid uncertainties are addressed in the this thesis. The proposed controller ensures excellent tracking performance, robust disturbance rejection, and robust performance against operating point and parameter variation with a simple fixed-parameter controller. Thirdly, this thesis presents a natural-frame variable-structure-based nonlinear control system for the master VSC applied in multiterminal grids to overcome problems associated with conventional dc-link voltage controllers, which are suffering from stability and performance issues, mainly attributed to the small-signal-based control design approach and the use of cascaded control structure based on the power balance framework that yields unmodeled nonlinear dynamics. Fourthly, this thesis presents a robust vector-controlled VSC that facilitates full converter power injection at weak and very weak ac grid conditions (i.e., when the short-circuit capacity ratio is one). The controller overcomes problems related to the stability and performance of conventional vector-controlled VSCs integrated into very weak ac grids (high impedance grids) because of the increased coupling between the converter and grid dynamics, via the phase-locked loop (PLL). As a result, a detailed ac-bus voltage dynamic model, including the PLL dynamics, is developed and validated in this thesis. Then, the model is used to design a robust optimal ac-bus voltage controller to stabilize the dynamics under operating point variation and grid impedance uncertainty. Fifthly, this thesis addresses the challenges associated with a dc-voltage-controlled VSC interfacing a wind turbine into a dc grid, which is gaining widespread acceptance under weak grid connection or isolated operation. Under weak grid connection or isolated operation, the machine-side VSC regulates the dc-link voltage via changes in the generator speed. However, several control difficulties are yielded; important problems are: 1) the nonlinear plant dynamics with a wide range of operating point variation; 2) the control lever is mainly the generator speed, which complicates the dc-link voltage control dynamics; 3) the presence of uncertain disturbances associated with dynamic loads (e.g., power-converter-based loads) connected to the dc grid and wind speed variation; and 4) the presence of parametric uncertainty associated with the equivalent dc-link capacitance due to connecting/disconnecting converter-based loads. Finally, this thesis presents a robust power sharing and dc-link voltage regulation controller for grid-connected VSCs in dc grids applications to overcome difficulties and problems related to the dynamics and stability of a grid-connected VSC with dc power sharing droop control. Major difficulties are: 1) ignoring the effect of the outer droop loop on the dc-link voltage dynamics when the dc-link voltage controller is designed, which induces destabilizing dynamics, particularly under variable droop gain needed for optimum economic operation, energy management, and successful network operation under converter outages and contingencies; 2) uncertainties in the dc grid parameters (e.g., passive load resistance and equivalent capacitance as viewed by the dc side of the VSC); and 3) disturbances in the dc grid (i.e., power absorbed or injected from/to the dc grid), which change the operating point and the converter dynamics by acting as a state-dependent disturbance. A theoretical analysis and comparative simulation and experimental results are presented in this thesis to show the validity and effectiveness of the developed models and proposed control structures.

Book Advanced Hierarchical Control and Stability Analysis of DC Microgrids

Download or read book Advanced Hierarchical Control and Stability Analysis of DC Microgrids written by Andrei-Constantin Braitor and published by Springer Nature. This book was released on 2022-02-20 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces several novel contributions into the current literature. Firstly, given that microgrid topologies are paramount in theoretical analysis, the author has proposed a rigorous method of computing the network’s admittance matrix and developed to facilitate the stability analysis of DC microgrids supplying nonlinear loads. This unique approach enabled the factorisation of the admittance matrix in a particular way that facilitates a rigorous theoretical analysis for deriving the stability conditions. Secondly, author has proposed a unified control structure at the primary control layer that maintains the widely accepted droop-based approaches and additionally ensures crucial current- and voltage-limiting properties, thus offering an inherent protection to distributed energy resources. He has formalised the control design proofs using Lyapunov methods and nonlinear ultimate boundedness theory, for both parallel and meshed microgrid configurations. Moreover, he has developed a distributed secondary controller using a diffusive coupling communication network, on top of the primary control, to achieve voltage restoration and improve the power sharing. In this way, the author has formulated the complete hierarchical control scheme. In this high-order nonlinear setting, he has analytically proven closed-loop system stability of the overall system, for the first time, using two-time scale approaches and singular perturbation theory, by formulating rigorous theorems that introduce straightforward conditions that guide the system and control design and demonstrate system stability at the desired equilibrium point. In addition, the author has provided a straightforward algorithm for simple testing of system stability and explored from a graphical perspective by giving an interpretation to the effect of the nonlinear load onto the system performance and stability.

Book Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources

Download or read book Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources written by Ramesh C. Bansal and published by Academic Press. This book was released on 2023-11-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Control Dynamics in Microgrid Systems with Renewable Energy Resources looks at complete microgrid systems integrated with renewable energy resources (RERs) such as solar, wind, biomass or fuel cells that facilitate remote applications and allow access to pollution-free energy. Designed and dedicated to providing a complete package on microgrid systems modelling and control dynamics, this book elaborates several aspects of control systems from classical approach to advanced techniques based on artificial intelligence. It captures the typical modes of operation of microgrid systems with distributed energy storage applications like battery, flywheel, electrical vehicles infrastructures that are integrated within microgrids with desired targets. More importantly, the techno-economics of these microgrid systems are well addressed to accelerate the process of achieving the SDG7 i.e., affordable and clean energy for all (E4ALL). This reference presents the latest developments including step by step modelling processes, data security and standards protocol for commissioning of microgrid projects, making this a useful tool for researchers, engineers and industrialists wanting a comprehensive reference on energy systems models. Includes simulations with case studies and real-world applications of energy system models Detailed systematic modeling with mathematical analysis is covered Features possible operating scenarios with solutions to the encountered issues

Book DC Microgrids

    Book Details:
  • Author : Nikita Gupta
  • Publisher : John Wiley & Sons
  • Release : 2022-06-21
  • ISBN : 111977716X
  • Pages : 484 pages

Download or read book DC Microgrids written by Nikita Gupta and published by John Wiley & Sons. This book was released on 2022-06-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: DC MICROGRIDS Written and edited by a team of well-known and respected experts in the field, this new volume on DC microgrids presents the state-of-the-art developments and challenges in the field of microgrids for sustainability and scalability for engineers, researchers, academicians, industry professionals, consultants, and designers. The electric grid is on the threshold of a paradigm shift. In the past few years, the picture of the grid has changed dramatically due to the introduction of renewable energy sources, advancements in power electronics, digitalization, and other factors. All these megatrends are pointing toward a new electrical system based on Direct Current (DC). DC power systems have inherent advantages of no harmonics, no reactive power, high efficiency, over the conventional AC power systems. Hence, DC power systems have become an emerging and promising alternative in various emerging applications, which include distributed energy sources like wind, solar and Energy Storage System (ESS), distribution networks, smart buildings, remote telecom systems, and transport electrification like electric vehicles (EVs). All these applications are designed at different voltages to meet their specific requirements individually because of the lack of standardization. Thus, the factors influencing the DC voltages and system operation needed to be surveyed and analyzed, which include voltage standards, architecture for existing and emerging applications, topologies and control strategies of power electronic interfaces, fault diagnosis and design of the protection system, optimal economical operation, and system reliability.

Book Stability Analysis  Flexible Control and Optimal Operation of Microgrid

Download or read book Stability Analysis Flexible Control and Optimal Operation of Microgrid written by Yong Li and published by Springer Nature. This book was released on 2023-04-19 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book intends to report the new results of the microgrid in stability analysis, flexible control and optimal operation. The oscillatory stability issue of DC microgrid is explored and further solved. Flexible and stable voltage & frequency control of microgrid is put forward considering the distributed generations or distributed energy storages. The optimal operation of multi-energy is researched in view of economic efficiency and low-carbon development. The results of this book are original from authors who carry out the related research together for a long time, which is a comprehensive summary for authors’ latest research results. The book is likely to be of interest to university researchers, electrical engineers and graduate students in power systems, power electronics, renewable energy and microgrid.

Book Integration of AC DC Microgrids Into Power Grids

Download or read book Integration of AC DC Microgrids Into Power Grids written by Fazel Mohammadi and published by . This book was released on 2020 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmental-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems.

Book Toward the Integration of DC Microgrids Into a Hybrid AC DC Paradigm

Download or read book Toward the Integration of DC Microgrids Into a Hybrid AC DC Paradigm written by Amr Abdelnaeem Ismail Said and published by . This book was released on 2016 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent penetration of distributed generation (DG) into existing electricity grids and the consequent development of active distribution networks (ADNs) have prompted an exploration of power distribution in a dc microgrid paradigm. Although dc power distribution has been implemented in aircraft, ships, and communication centres, the technology is still at an early stage and must be investigated with respect to technical feasibility when applied to distribution systems. In particular, the operation of a dc microgrid in both grid-connected and islanded modes and its integration into an existing ac infrastructure are subject to significant challenges that impede the practical realization of dc microgrids. On one hand, because the dc voltage profile is coupled with the injected active power at the system buses, it is seriously influenced by the intermittent nature of renewable resources such as solar and wind energy. In islanded operating mode, the presence of system resistance leads to a further trade-off between an appropriate system voltage profile and a precise power management scheme. On the other hand, the development of hybrid ac/dc microgrids introduces a fresh operational philosophy that enhances power sharing among ac and dc subgrids through the coupling of ac and dc steady-state variables. With these challenges as motivation, the primary goal of this thesis was to develop effective power management schemes and a steady-state analysis tool that can enable the reliable integration of dc microgrids into a smart hybrid ac/dc paradigm. Achieving this objective entailed the completion of three core studies: 1) the introduction of a robust control scheme for mitigating voltage regulation challenges associated with dc distribution systems (DCDSs) that are characterized by a high penetration of distributed and renewable generation, 2) the proposal of a supervisory control strategy for precise DG output power allocation that is based on DG rating and operational costs yet guarantees an appropriate voltage profile for islanded dc microgrids, 3) the development of an accurate and comprehensive power flow algorithm for analyzing the steady-state behaviour of islanded hybrid ac/dc microgrids, and 4) the optimization of hybrid ac/dc microgrids configuration. As the first research component, a novel multi-agent control scheme has been developed for regulating the voltage profile of DCDSs that incorporate a large number of intermittent energy sources. The proposed control scheme consists of two sequential stages. In the first stage, a distributed state estimation algorithm is implemented to estimate the voltage profile in DCDSs, thus enhancing the interlinking converter (IC) operation in regulating the system voltages within specified limits. If the IC alone fails to regulate the system voltages, a second control stage is activated and executed through either equal or optimum curtailment strategy of the DG output power. A variety of case studies have been conducted in order to demonstrate the effectiveness, robustness, and convergence characteristics of the control schemes that have been developed. The second element of this research is a multi-agent supervisory control that has been created in order to provide precise power management in isolated DC microgrids. Two aspects of power management have been considered: 1) equal power sharing, which has been realized via a proposed distributed equal power sharing (DEPS) algorithm, and 2) optimal power dispatch, which has been achieved through a proposed distributed equal incremental cost (DEIC) algorithm. Both algorithms offer the additional advantage of affording the ability to restore the average system voltage to its nominal value. Real-time OPAL-RT simulations have demonstrated the effectiveness of the developed algorithms in a hardware-in-the-loop (HIL) application. The third part of the research has introduced a sequential power flow algorithm for hybrid ac/dc microgrids operating in islanded mode. In contrast to the conditions in grid-connected systems, variable rather than fixed ac frequencies and dc voltages are utilized for coordinating power between the ac and dc microgrids. The primary challenge is to solve the power flow problem in hybrid microgrids in a manner that includes consideration of both the absence of a slack bus and the coupling between the frequency and dc voltage though ICs. In the proposed algorithm, the ac power flow is solved using the Newton-Raphson (NR) method, thereby updating the ac variables and utilizing them accordingly in a proposed IC model for solving the dc problem. This sequential algorithm is iterated until convergence. The accuracy of the algorithm has been verified through detailed time-domain simulations using PSCAD/EMTDC, and its robustness and computational cost compare favourable with those of conventional algorithms. The final part highlights the implementation of the developed steady-state models in obtaining an optimum hybrid microgrid configuration. The system configuration could be manipulated by changing the DG droop settings as well as the network topological structure. The contribution of both approaches has been investigated, through an optimum power flow (OPF) formulation, in improving the system loadability as the primary measure of the hybrid microgrid performance.

Book DYNAMIC MODELING  STABILITY ANALYSIS AND CONTROL OF AC DC INTERCONNECTED MICROGRID USING DQ TRANSFORMATION

Download or read book DYNAMIC MODELING STABILITY ANALYSIS AND CONTROL OF AC DC INTERCONNECTED MICROGRID USING DQ TRANSFORMATION written by Partha Sarathi Sarker and published by . This book was released on 2018 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there have been significant changes in power systems due to the integration of renewables, distributed generation, switched power loads, and energy storage systems, etc. Locally these AC/DC microgrids include both DC generation (such as solar PV) and AC generation (such as wind generation), various DC and AC loads, converters and inverters, and energy storage systems, such as storage batteries and supercapacitors. DC systems are often characterized as low inertia systems whereas AC generation and systems are usually high inertia and high time constant systems. As such, various components of the microgrid will have different temporal characteristics in case of disturbances, such as short circuit, load switchings, etc. which may lead to instability of the microgrid. This research develops the first principle model for coupling the AC and the DC subsystem of an integrated AC/DC microgrid utilizing the dq-framework. The developed model is highly nonlinear and captures the dynamic interaction between the AC and DC subsystems of the microgrid. Lyapunov stability is used to evaluate the stability of the complete system. Simulation results show that the AC and DC subsystems are tightly dynamically coupled so that any disturbance in one subsystem induces transients in the other subsystem. Induced transients due to pulse loads on the AC and DC subsystems clearly show that generator damper winding alone may not be enough to mitigate transients in the microgrid. Addition of prime mover and excitation system controllers for the generator improves the transients primarily on the AC subsystem. Thus, a battery storage with a charge/discharge controller was also added to the DC subsystem. Simulations of the AC/DC microgrid with all three controllers validate the smooth operation of the system for all types of disturbances. The proposed method can be extended in modeling microgrid with multiple generators and various types of loads.

Book Hybrid Renewable Energy Systems and Microgrids

Download or read book Hybrid Renewable Energy Systems and Microgrids written by Ersan Kabalci and published by Academic Press. This book was released on 2020-11-21 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems

Book Research Anthology on Smart Grid and Microgrid Development

Download or read book Research Anthology on Smart Grid and Microgrid Development written by Information Resources Management Association and published by Engineering Science Reference. This book was released on 2021-09-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--