EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Characterization of a Radio frequency Dc dc Power Converter

Download or read book Design and Characterization of a Radio frequency Dc dc Power Converter written by David Alexander Jackson and published by . This book was released on 2005 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of radio-frequency (RF) amplifier topologies in dc/dc power converters allows the operating frequency to be increased by more than two orders of magnitude over the frequency of conventional converters. This enables a reduction in energy storage capacity by several orders of magnitude, and completely eliminates the need for ferromagnetic material in the converter. As a result, power converter size, weight and cost can all potentially be reduced. Moreover, converter output power and efficiency remain high because of the soft-switching capabilities of RF amplifiers. This document describes the design, implementation and measurement of a dc/dc power converter cell operating at 100MHz, with approximately 10 to 30W of output power at around 75% efficiency. The cell is designed for an input voltage range of 11 to 16V, and a user-determined output voltage on the same order of magnitude. The design of this cell also allows an unlimited number of identical cells to be used in parallel to achieve higher output power. This type of converter has applications in a broad range of industries, including automotive, telecommunications, and computing.

Book Radio Frequency Direct Current direct Current Converters

Download or read book Radio Frequency Direct Current direct Current Converters written by Olivia Leitermann and published by . This book was released on 2008 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: High frequency power conversion is attractive for the opportunities it affords for improved performance. Dc-dc converters operating at high frequencies use smaller-valued energy storage elements, which tend to be physically smaller and lower-cost, and this can result in improved transient performance while retaining high efficiency. One way to achieve high switching frequencies is by using resonant inverter and rectifier topologies and regulating voltage via on-off control. This scheme requires a great deal of investigation of design practices appropriate to high frequency power conversion. The design issues were investigated for a 200 W 160-200 V input 33 V output converter. A comparison of resonant inverter topologies for the power stage was made. Appropriate devices were sought, compared, and characterized. A high frequency gate drive scheme for a large vertical MOSFET was developed. Several prototypes were built and these are also presented.

Book True average Current mode Control of DC DC Power Converters

Download or read book True average Current mode Control of DC DC Power Converters written by Dalvir K. Saini and published by . This book was released on 2018 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy efficient, wide-bandwidth, and well-regulated dc-dc power converters are in great demand in today's emerging technologies in areas such as medical, communication, aerospace, and automotive industries. In addition to design and selection of the converter components, a robust closed-loop modeling is very essential for reliable power-electronic systems.Two closed-loop control techniques for power converters exist: voltage-mode control and current-mode control. The principles of voltage-mode control have been explored in great depths by researchers over the last two decades. However, the dynamic modeling of current-mode controlled dc-dc power converters has many uncharted areas that needs careful attention. Two main methods exist under the category of current-mode control: peak current-mode control and average current-mode control. Both of these control strategies are very attractive in applications that require fast control speeds, improved voltage regulation, and improved power supply noise rejection ratio. In recent technological advancements, where high noise immunity and tight regulation are desired, the average current-mode control has proven to be a superior choice, when compared to other control techniques for power converters. In this dissertation, a complete systematic theoretical framework for analysis, design, characterization, and measurements of the dc-dc converters with average current-mode control is introduced. To overcome the drawbacks of the traditional average current-mode control method, a new, true-averaged current-mode control technique is proposed. The new technique is implemented on the basic converter topologies namely, buck, boost, and buck-boost. The dynamic small-signal models of the converter power-stages are developed using the circuit-averaging technique. Theinner-current loop of the power converters is designed and their frequency-domain, time-domain, and pole-zero domain characteristics are exploited. Subsequently, the outer-voltage loop is designed in the presence of current-controlled power stage and the overall converter performance is evaluated against dynamically-varying operating conditions.A laboratory prototype of a buck-boost converter for 12 V to 5 V at 25 W operating at 200 kHz was designed, built, and measured. The theoretically predicted results were validated both through simulations and experiments. The techniques to measure the small-signal open-loop and closed-loop transfer functions are also provided. Excellent agreement between the theoretical and experimental results were observed.

Book Characterization and Design of Voltage mode Controlled Full bridge DC DC Converter with Current Limit

Download or read book Characterization and Design of Voltage mode Controlled Full bridge DC DC Converter with Current Limit written by Nathaniel R. Smith and published by . This book was released on 2018 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in Direct Current (DC) electrical power systems have enabled new functionality in many, varied applications. Discrete power semiconductor devices are increasing in efficiency, switching frequency, and power density, resulting in greater usage of DC power management and distribution methods, including DC/DC conversion. DC distribution lacks inherent capability to safely and effectively break fault current, particularly in mobile solutions, where larger and slower electromechanical switching devices are not optimal or feasible. One solution is to design a low-energy breaking point into a switching power supply. Simpler converter designs, with a lower number of switching devices, have been modeled and can be functionally utilized for this purpose. However, these designs cannot easily or efficiently provide isolation between the source and the load. A full-bridge DC/DC converter can accomplish this task with galvanic isolation through a transformer. The full-bridge DC/DC converter is fairly complex to analyze with state-space analysis and does not have an existing averaged model. This thesis focuses on developing averaged and small-signal models for the full-bridge DC/DC converter; validating the small-signal averaged models by simulation in SABER circuit simulation software; and using the validated models to design a full-bridge DC/DC converter for simulation in SABER. The converter power stage is designed along with a Type II controller, a comparative current limit, non-Zero-Voltage-Switching gate drives, and a synchronous rectifier. The designed converter is evaluated for closed-loop stability against step changes in input voltage, load current, and reference voltage. The results are provided to show sufficient response of the full-bridge DC/DC converter, given the design parameters. The proposed architecture accommodates future work to reduce DC fault let-through energy

Book Pulse Width Modulated DC DC Power Converters

Download or read book Pulse Width Modulated DC DC Power Converters written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2015-08-13 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers. Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field. Key features of 2nd edition: Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC. Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, including wide band-gap power devices (SiC and GaN). Fully revised Solutions for all end-of-chapter problems available to instructors via the book companion website. Step-by-step derivation of closed-form design equations with illustrations. Fully revised figures based on real data. With improved end-of-chapter summaries of key concepts, review questions, problems and answers, biographies and case studies, this is an essential textbook for graduate and senior undergraduate students in electrical engineering. Its superior readability and clarity of explanations also makes it a key reference for practicing engineers and research scientists.

Book Laboratory Manual for Pulse Width Modulated DC DC Power Converters

Download or read book Laboratory Manual for Pulse Width Modulated DC DC Power Converters written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2015-10-26 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters. Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines programming language with a simulation tool designed for proficiency in the theoretical and practical concepts. Students and instructors can choose from an extensive list of topics involving simulations on MATLAB, SABER, or SPICE-based platforms, enabling readers to gain the most out of the prelab, inlab, and postlab activities. The laboratory exercises have been taught and continuously improved for over 25 years by Marian K. Kazimierczuk thanks to constructive student feedback and valuable suggestions on possible workroom improvements. This up-to-date and informative teaching material is now available for the benefit of a wide audience. Key features: Includes complete designs to give students a quick overview of the converters, their characteristics, and fundamental analysis of operation. Compatible with any programming tool (MATLAB, Mathematica, or Maple) and any circuit simulation tool (PSpice, LTSpice, Synopsys SABER, PLECS, etc.). Quick design section enables students and instructors to verify their design methodology for instant simulations. Presents lab exercises based on the most recent advancements in power electronics, including multiple-output power converters, modeling, current- and voltage-mode control schemes, and power semiconductor devices. Provides comprehensive appendices to aid basic understanding of the fundamental circuits, programming and simulation tools. Contains a quick component selection list of power MOSFETs and diodes together with their ratings, important specifications and Spice models.

Book Average Current Mode Control of DC DC Power Converters

Download or read book Average Current Mode Control of DC DC Power Converters written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: AVERAGE CURRENT-MODE CONTROL OF DC-DC POWER CONVERTERS An authoritative one-stop guide to the analysis, design, development, and control of a variety of power converter systems Average Current-Mode Control of DC-DC Power Converters provides comprehensive and up-to-date information about average current-mode control (ACMC) of pulse-width modulated (PWM) dc-dc converters. This invaluable one-stop resource covers both fundamental and state-of-the-art techniques in average current-mode control of power electronic converters???featuring novel small-signal models of non-isolated and isolated converter topologies with joint and disjoint switching elements and coverage of frequency and time domain analysis of controlled circuits. The authors employ a systematic theoretical framework supported by step-by-step derivations, design procedures for measuring transfer functions, challenging end-of-chapter problems, easy-to-follow diagrams and illustrations, numerous examples for different power supply specifications, and practical tips for developing power-stage small-signal models using circuit-averaging techniques. The text addresses all essential aspects of modeling, design, analysis, and simulation of average current-mode control of power converter topologies, such as buck, boost, buck-boost, and flyback converters in operating continuous-conduction mode (CCM). Bridging the gap between fundamental modeling methods and their application in a variety of switched-mode power supplies, this book: Discusses the development of small-signal models and transfer functions related to the inner current and outer voltage loops Analyzes inner current loops with average current-mode control and describes their dynamic characteristics Presents dynamic properties of the poles and zeros, time-domain responses of the control circuits, and comparison of relevant modeling techniques Contains a detailed chapter on the analysis and design of control circuits in time-domain and frequency-domain Provides techniques required to produce professional MATLAB plots and schematics for circuit simulations, including example MATLAB codes for the complete design of PWM buck, boost, buck-boost, and flyback DC-DC converters Includes appendices with design equations for steady-state operation in CCM for power converters, parameters of commonly used power MOSFETs and diodes, SPICE models of selected MOSFETs and diodes, simulation tools including introductions to SPICE, MATLAB, and SABER, and MATLAB codes for transfer functions and transient responses Average Current-Mode Control of DC-DC Power Converters is a must-have reference and guide for researchers, advanced graduate students, and instructors in the area of power electronics, and for practicing engineers and scientists specializing in advanced circuit modeling methods for various converters at different operating conditions.

Book Design Considerations for Radio Frequency Power Converters

Download or read book Design Considerations for Radio Frequency Power Converters written by Lei Gu (Researcher in power electronics) and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Compact and efficient high-frequency power converters and amplifiers are needed in a variety of applications, including base stations, mobile devices, and medical equipment. The ever-growing need for a smaller size, longer battery life, and lower cost introduces challenging design considerations for radio-frequency power converters. Today, these radio-frequency resonant converters use harmonic tuning to shape the voltage or current waveform of the switching device, with the primary goals of reducing device stress and increasing achievable efficiency. Although harmonic-tuned resonant converters can be very compact and efficient for a certain condition, significant challenges remain to widespread adoption, including limited high-efficiency range, complicated design procedures, and higher device stress compared with conventional approaches. This thesis presents circuit techniques that can extend the voltage, frequency, and efficiency ranges of radio-frequency power converters and provides more straightforward analysis and easy-to-implement design procedures. This thesis first presents a multi-resonant gate driver circuit developed using the harmonic wave-shaping technique that significantly reduces the high-frequency gate driving losses for Si and SiC MOSFETs. By controlling different harmonic components of an ideal square wave, we can resonantly shape a quasi-square voltage waveform at the gate. This gate driver is simple to control and has a low component count. Compared with a sine wave gate signal, this method reduces the transition time between the MOSFET is fully enhanced and turned-off, driving down the switching losses. Compared with similar multi-resonant drivers that are self-oscillating, this driver reduces the long start-up time required to reach steady-state. Intuitive design methodologies based on the frequency-domain plot are introduced. Using this technique, we are able to resonantly drive a Si MOSFET at 20 MHz and recycle 60% of the hard-switching gate-driving loss. We also demonstrate this driver on a SiC MOSFET switching at 30 MHz and save 80% of the hard-switching loss. Modern applications demand power converters to maintain a constant voltage output with high efficiency across significant load variation. This thesis presents a bidirectional dc-dc converter that enables efficient fixed-ratio voltage conversion at tens of megahertz. By selecting a proper matching network for the intermediate gain stage, we address multiple challenges simultaneously; a) replacing a lossy passive diode with a more efficient active transistor, b) maintaining efficient soft-switching operation, and c) a constant voltage conversion ratio over a wide load range. A 64 MHz, 12 W, 36 V-to-12 V prototype converter with 75% peak efficiency verifies the operation of the structure. An interleaved configuration is then proposed to improve the efficiency and transient performance of a single-phase structure. A 13.56 MHz, 210 V-to-30 V prototype converter with 90% peak efficiency at 200 W demonstrates the advantages of this proposed structure. RF power amplifiers underpin many systems that support our modern infrastructure. The Class EF and E/F family of harmonic-tuned switch-mode amplifiers have simple gate drives, reduced voltage stress, and higher output power capabilities than a conventional Class E circuit. To best utilize the performance potential of this family of circuits, this thesis presents a novel push-pull Phi2 (EF2) amplifier using interleaving and series-stacking techniques, denoted as a PPT Phi2 circuit. This series-stacked PPT Phi2 circuit combines all of the main advantages of different topologies, like the simplicity of gate driving, highest cut-off frequency, lowest voltage stress, and load-invariant operation. A compact 6.78 MHz, 100 V, 300 W prototype converter is demonstrated. Using lowcost Si devices, the prototype converter achieves 96% peak total efficiency and maintains above 94.5% drain efficiency across a wide range of voltage and power. This new series-stacked PPT F2 RF amplifier doubles the maximum operating frequency and voltage range of a Class EF or E/F amplifier with benefits in many modern applications that require high-frequency high-power RF signals, like wireless charging for electric vehicles, plasma RF drives, and nuclear magnetic resonance (NMR) spectroscopy.

Book Design and Analysis of Switched capacitor Based Partial Power Architecture for Radio Frequency DC DC Power Conversion with Gallium Nitride Power Devices

Download or read book Design and Analysis of Switched capacitor Based Partial Power Architecture for Radio Frequency DC DC Power Conversion with Gallium Nitride Power Devices written by and published by . This book was released on 2016 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates a new reconfigurable switched-capacitor (SC) based partial power architecture which enhances the performance of resonant DC/DC converters operating at radio frequency (RF) with gallium nitride (GaN) power devices to address challenges in telecommunication brick DC/DC converters. The proposed architecture has a comprehensive compatibility with existing RF and SC topologies and improves the performance of RF converters through partitioning of energy conversion stage and output regulation stage. Emerging new wide bandgap devices like GaN FETs enable a higher power density DC/DC converter design. A wider input range, larger voltage conversion ratio, smaller size, and excellent transient performance are expected. The prototype of the proposed GaN reconfigurable SC-based partial power RF converter comprises of a 20 MHz resonant single-ended-primary-inductor-converter (SEPIC) as a regulated stage and a high-efficiency 2 MHz reconfigurable SC as an unregulated stage. The GaN RF resonant SEPIC regulates the output using a robust ON/OFF control scheme, which enables fast transient responses. The high-efficiency GaN reconfigurable SC provides 1:1, 2:1 and 3:1 voltage conversion ratio which widens the input voltage range. A full time-domain, closed-form analytical model for RF resonant SEPIC has been developed, and new design methodology has been proposed for the GaN reconfigurable SC to address the design challenges at megahertz. The electromagnetic interference (EMI) characteristics of the prototype have also been investigated and evaluated by experiments. An alternative control scheme and PCB layout guidelines have been developed for EMI reduction.

Book Design and Performance Analysis of a Medium power Dc dc Converter

Download or read book Design and Performance Analysis of a Medium power Dc dc Converter written by Arthur G. Birchenough and published by . This book was released on 1970 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design and performance of an experimental dc-dc converter are described. The converter was rated for a power output of 1 kW, with a 150-percent overload rating, and it produced a 200-V, +1-percent, dc output from an input of 56 V, +10 and -20 percent. Voltage regulation is accomplished by varying the duty cycle of the internal 7-kHz quasi-square-wave carrier. Integrated circuits in the control section, a proportional current drive system, and powdered metal cores (Ni-17Fe-2Mo) for the power transformer were some of the design features. The measured efficiency peaked at 92 percent and was 88 percent at 1 kW. The total component weight was 6 lb (2.7 kg).

Book Radio Frequency Dc dc Power Conversion

Download or read book Radio Frequency Dc dc Power Conversion written by Juan Rivas and published by . This book was released on 2006 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations associated with conventional designs. In particular, the new architectures described here structure the energy processing and control functions of the system in such a manner that high efficiency can be achieved across wide load range while regulating the output. Moreover, these architectures are amenable to circuit designs operating at fixed frequency and duty ratio, considerable easing the circuit design. The thesis also develops new circuit designs that are well suited to these new architectures. As part of this, two new gate drives and control methods are introduced that greatly reduce gating loss at VHF frequencies for fixed frequency, fixed duty ratio operation. One of these gating schemes provides near theoretical minimum loss by resonantly wave shaping the gate voltage to have a trapezoidal drive voltage. This waveshaping approach is then taken a step further, yielding a new class of dc-dc converter that archives a significant reduction in peak switch voltage stress, requires small passive components with low energy storage, and provides the capability for extremely rapid startup and shutdown. This new class of converter is well adapted to the architectures and gate drive methods proposed in the thesis. It is expected that the new architectures and circuit designs introduced here will contribute to the development of power converter having greatly reduced size and improved transient performance.

Book Dynamic Analysis of Switching Mode DC DC Converters

Download or read book Dynamic Analysis of Switching Mode DC DC Converters written by Andre Kislovski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most critical part of the modern switching-mode power supply is the regulated dc/dc converter. Its dynamic behavior directly determines or influences four of the important characteristics of the power supply: • Stability of the feedback loop • Rejection of input-voltage ripple and the closely-related transient re sponse to input-voltage perturbation • Output impedance and the closely-related transient response to load perturbation • Compatibility with the input EMI filter Due to the complexity of the operation of the converter, predicting its dynamic behavior has not been easy. Without accurate prediction, and depending only on building the circuit and tinkering with it until the operation is satisfactory, the engineering cost can easily escalate and schedules can be missed. The situation is not much better when the circuit is built in the computer, using a general-purpose circuit-simulation program such as SPICE. (At the end of this book is a form for obtaining information on a computer program especially well suited for dynamic analysis of switching-mode power converters: DYANA, an acronym for "DYnamic ANAlysis. " DYANA is based on the method given in this book. ) The main goal of this book is to help the power-supply designer in the prediction of the dynamic behavior by providing user-friendly analytical tools, concrete results of already-made analyses, tabulated for easy application by the reader, and examples of how to apply the tools provided in the book.

Book Multi MHz High Frequency Resonant DC DC Power Converter

Download or read book Multi MHz High Frequency Resonant DC DC Power Converter written by Dianguo Xu and published by Springer Nature. This book was released on 2020-08-08 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes multi-MHz high frequency resonant DC-DC power converters with operating frequencies ranging from several MHz to tens of MHz in detail, aiming to support researchers and engineers with a focus on multi-MHz high frequency converters. The inverter stage, rectifier stage, matching network stage are analyzed in detail. Based on the three basic stages, typical non-isolated and isolated resonant DC-DC converters are depicted. To reduce the high driving loss under multi-MHz, resonant driving methods are introduced and improved. Also, the design and selection methods of passive and active component under multi-MHz frequency are described, especially for aircore inductor and transformer. Furthermore, multi-MHz resonant converter provides an approach for achieving flexible system.

Book Masters Theses in the Pure and Applied Sciences

Download or read book Masters Theses in the Pure and Applied Sciences written by Wade H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 34 (thesis year 1989) a total of 13,377 theses titles from 26 Canadian and 184 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 34 reports theses submitted in 1989, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.

Book Design and Characterization of Differentially Enhanced Duty Ripple Control for Switching DC DC Converter

Download or read book Design and Characterization of Differentially Enhanced Duty Ripple Control for Switching DC DC Converter written by Jiwei Fan and published by . This book was released on 2010 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: ripple control, monolithic, switching DC-DC converter, Differential Difference Amplifier, Differentially Enhanced Duty Ripple Control.

Book DC DC Power Converter Design   Implementation

Download or read book DC DC Power Converter Design Implementation written by Irfan Jamil and published by . This book was released on 2013-10 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bachelor Thesis from the year 2013 in the subject Electrotechnology, grade: Bachelor, Harbin Engineering University (College of Automation), course: Electronics, language: English, abstract: In recent years, with the development of power electronic devices control theory and the increasing demand of high-quality power supply, power electronics technology has aroused widely attention from scholars. DC-DC power converters are employed in a variety of applications, including power supplies for personal computers, office equipment; spacecraft power systems, laptop, Cell phones, and telecommunications equipment, as well as dc motor drives. In this project a detailed study of zero current switching buck converters is done and also practically implemented in hardware. In addition a mathematical analysis of switching loss occurring in MOSFET's is also presented and a short study of zero voltage switching is also appended. During the hardware implementation the Ton, Toff and operating frequency were found out and thoroughly tuned through the IC555 circuit and various waveforms across inductors, capacitors, load resistor and test points were noted down. In this thesis, the Buck type circuit structure and working principle are analyzed and a DC-DC buck converter is designed. The designed converter uses ZCS scheme and realized the function that the power form is converted from 12V DC voltages to 5 V DC voltages. The output voltage can be adjusted according to the output resistor. The output voltage is stable and the performance of the designed converter is ensured. Simulation study was carried out and effectiveness of the designed converter is verified by simulation results. Finlay design is implemented in hardware and PCB layout as well.

Book Pulsewidth Modulated DC to DC Power Conversion

Download or read book Pulsewidth Modulated DC to DC Power Conversion written by Byungcho Choi and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: ORGANIC REACTIONS CYCLIZATION REACTIONS OF NITROGEN-CENTERED RADICALS Stuart W. McCombie, Béatrice Quiclet-Sire, and Samir Z. Zard TRANSITION-METAL-CATALYZED AMINOOXYGENATION OF ALKENES Sherry R. Chemler, Dake Chen, Shuklendu D. Karyakarte, Jonathan M. Shikora, and Tomasz Wdowik