Download or read book Modelling of Crack Growth in Single Crystal Nickel Base Superalloys written by Christian Busse and published by Linköping University Electronic Press. This book was released on 2019-09-24 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers. Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert. Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.
Download or read book Superalloys 2012 written by Eric S. Huron and published by John Wiley & Sons. This book was released on 2012-10-02 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt: A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength at high temperatures. Superalloy development has been driven primarily by the aerospace and power industries. This compilation of papers from the Twelfth International Symposium on Superalloys, held from September 9-13, 2012, offers the most recent technical information on this class of materials.
Download or read book GaN AIN InN and their Alloys Volume 831 written by Christian Wetzel and published by Cambridge University Press. This book was released on 2005-07-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses GaN and Related Alloys and reflects an emerging emphasis on the binaries of InN and AlN. The major thrust here is the topical development of thin-film growth, bulk growth techniques, methods to cover the full ternary and quaternary alloy ranges toward InN and AlN and their characterization; strategies for structural defect reduction and their characterization; ways to better control p-type doping and its characterization; device and defect physics, including polarization effects; physics of surfaces and interfaces; and device processing techniques. In addition, advances in MBE devices, high-power electronics, RF performance of electronics, UV emitters, high-efficiency light emitters, photo and chemical sensors, as well as new applications within the group-III nitrides, are also covered. The book captures the current status of this field and will be useful for researchers working with group-III nitrides, as well as for students who seek entry into this subject.
Download or read book Aspects of Crack Growth in Single Crystal Nickel Base Superalloys written by Christian Busse and published by Linköping University Electronic Press. This book was released on 2017-11-20 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures. This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers. Denna licentiatavhandling är en produkt av resultat som genererats i forskningsprojektet KME-702, och omfattar modellering, mikrostrukturundersökningar och materialprovning av gjutna nickelbaserade superlegeringar. Huvudsyftet med detta arbete är att modellera sprickförloppet under utmattning i enkristallina nickelbaserade superlegeringar. För att uppnå detta har kristallorienteringens inverkan på sprickbeteendet utvärderats. Resultaten visar att kristallorienteringen har en stark inverkan på materialbeteendet, således måste hänsyn till denna tas. Dessutom har en linjär-elastisk sprickdrivkraftsparameter lämplig att beskriva kristallografisk sprickbildning utvecklats. Denna parameter är baserad på anisotropa spänningsintensitetsfaktorer på kristallplan och kan prediktera det korrekta kristallografiska sprickplanet efter övergång från Modus I spricka. Slutligen har undersökts en metod för att ta hand om inelastiska deformationer i en linjär-elastisk brottmekanikskontext. Ett restspänningsfält extraherades från en osprucken finita element modell med en ideal plastisk materialmodell. Denna överlagrades på spänningsfältet från den spruckna modellen, som analyserades med en linjär-elastisk materialmodell, för att ta hänsyn till de inelastiska deformationerna vid bestämning av sprickdrivkraften. Modelleringsarbetet validerades genom materialprovning på två olika provgeometrier vid olika temperaturer. Licentiatavhandlingen består av två delar, där del I ger en introduktion och bakgrund till forskningsområdet medan del II består av tre papper. Dieses Lizentiat der Ingenieurwissenschaften ist im Rahmen des Forschungsprojekts KME-702 entstanden, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit ist die Modellierung der Ermüdungsrissausbreitung in einkristallinen nickelbasierten Superlegierungen. Um dieses zu erreichen, wurde der Einfluss der Kristallorientierungen auf das Rissverhalten untersucht. Die Ergebnisse zeigen, dass die Kristallorientierung das Materialverhalten stark beeinflusst und daher berücksichtigt werden muss. Darüber hinaus wurde ein linear elastischer Rissantriebskraftparameter entwickelt, der zum Beschreiben von kristallographischen Rissen geeignet ist. Dieser Parameter basiert auf aufgelösten anisotropen Spannungsintensitätsfaktoren und ist in der Lage, die korrekte kristallographische Rissebene nach einem Übergang von einem Modus I Riss vorherzusagen. Abschließend wird in einem linear-elastisch bruchmechanischen Kontext eine Methode untersucht, die nichtelastischen Deformationen bei der Bestimmung der Rissantriebskraft zu berücksichtigen. Dazu wird aus einem Finite-Elemente Modell, welches keinen Riss aufweist und mit einem perfekt plastischen Materialmodell beschrieben wird, das Restspannungsfeld extrahiert und dem Spannungsfeld überlagert, welches aus dem Modell mit Riss unter Verwendung eines linear elastischen Materialmodells erzeugt wurde. Die Modellierung wird durch Materialtests an zwei verschiedenen Probengeometrien bei unterschiedlichen Temperaturen validiert. Dieses Lizentiat der Ingenieurwissenschaften besteht aus zwei Teilen, wobei Teil I eine Einführung und einen Hintergrund in das Forschungsgebiet gibt, während Teil II aus drei Forschungsartikeln besteht.
Download or read book Superalloys 2020 written by Sammy Tin and published by Springer Nature. This book was released on 2020-08-28 with total page 1098 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.
Download or read book The Superalloys written by Roger C. Reed and published by Cambridge University Press. This book was released on 2008-07-31 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superalloys are unique high-temperature materials used in gas turbine engines, which display excellent resistance to mechanical and chemical degradation. This book introduces the metallurgical principles which have guided their development. Suitable for graduate students and researchers, it includes exercises and additional resources at www.cambridge.org/9780521859042.
Download or read book Nano and Microstructural Design of Advanced Materials written by M. A. Meyers and published by Elsevier. This book was released on 2003-12-05 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied
Download or read book Multiaxial Fatigue written by Darrell Socie and published by SAE International. This book was released on 1999-12-15 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides practicing engineers, researchers, and students with a working knowledge of the fatigue design process and models under multiaxial states of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue.
Download or read book Effect of Dwell times on Crack Propagation in Superalloys written by Jonas Saarimäki and published by Linköping University Electronic Press. This book was released on 2015-12-10 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines are widely used in industry for power generation and as a power source at "hard to reach" locations where other possibilities for electrical supply are insufficient. There is a strong need for greener energy, considering the effect that pollution has had on global warming, and we need to come up with ways of producing cleaner electricity. A way to achieve this is by increasing the combustion temperature in gas turbines. This increases the demand on the high temperature performance of the materials used e.g. superalloys in the turbine. These high combustion temperatures can lead to detrimental degradation of critical components. These components are commonly subjected to cyclic loading of different types e.g. combined with dwell-times and overloads at elevated temperatures, which influence the crack growth. Dwell-times have shown to accelerate crack growth and change the cracking behaviour in both Inconel 718 and Haynes 282. Overloads at the beginning of the dwell-time cycle have shown to retard the dwell time effect on crack growth in Inconel 718. To understand these effects more microstructural investigations are needed. The work presented in this licentiate thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", concentrating on fatigue crack growth mechanisms in superalloys during dwell-times, which have shown to have a devastating effect on the crack propagation behaviour. Mechanical testing was performed under operation-like conditions in order to achieve representative microstructures and material data for the subsequent microstructural work. The microstructures were microscopically investigated in a scanning electron microscope (SEM) using electron channeling contrast imaging (ECCI) as well as using light optical microscopy. The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at the maximum load (0% overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. When an overload is applied prior to the dwell-time, the crack growth rate decreases with increasing overload levels in Inconel 718. At high temperature crack growth in Inconel 718 took place as intergranular crack growth along grain boundaries due to oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along phase boundaries with subsequent severe oxidation of the phase. This thesis comprises two parts. The first giving an introduction to the field of superalloys and the acting microstructural mechanisms that influence fatigue during dwell times. The second part consists of two appended papers, which report the work completed so far in the project.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Cracks in superalloys written by Jonas Saarimäki and published by Linköping University Electronic Press. This book was released on 2018-01-18 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines are widely used in industry for power generation and as a power source at hard to reach locations where other possibilities for electrical power supplies are insufficient. New ways of producing greener energy is needed to reduce emission levels. This can be achieved by increasing the combustion temperature of gas turbines. High combustion temperatures can be detrimental and degrade critical components. This raises the demands on the high temperature performance of the superalloys used in gas turbine components. These components are frequently subjected to different cyclic loads combined with for example dwell-times and overloads at elevated temperatures, which can influence the crack growth. Dwell-times have been shown to accelerate crack growth and change cracking behaviour in both Inconel 718, Haynes 282 and Hastelloy X. On the other hand, overloads at the beginning of a dwell-time cycle have been shown to retard the dwell-time effect on crack growth in Inconel 718. More experiments and microstructural investigations are needed to better understand these effects. The work presented in this thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", where I have mainly looked at fatigue crack growth mechanisms in superalloys subjected to dwell-fatigue, which can have a devastating effect on crack propagation behaviour. Mechanical testing was performed under operation-like cycles in order to achieve representative microstructures and material data for the subsequent microstructural work. Microstructures were investigated using light optical microscopy and scanning electron microscopy (SEM) techniques such as electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at maximum load (0 % overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. The crack growth rate decreases with increasing overload levels in Inconel 718 when an overload is applied prior to the dwell-time. At high temperature, intergranular crack growth was observed in Inconel 718 as a result of oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along ?-phase boundaries with subsequent oxidation of the ?-phase. This thesis comprises two parts. Part I gives an introduction to the field of superalloys and the acting microstructural mechanisms related to fatigue and crack propagation. Part II consists of five appended papers, which report the work completed as part of the project.
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book The Microstructure of Superalloys written by Madeleine Durand-Charre and published by Routledge. This book was released on 2017-11-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents all the main aspects of the microstructure of nickel-base superalloys, and includes micrographs chosen from among a large range of commercial and academic alloys, from the as-cast product to in-situ components, worn from in-service use. Including more than 100 illustrations, the text explains all the transformation mechanisms involved in the origination (creation) of microstructures during solidification or heat treatments (crystallization paths, segregation, crystal orientation, precipitation, TCP, coarsening and rafting, etc.). It includes up-to-date information and data such as phase diagrams, crystallographic structures, and relationships with functional properties. Nearly 300 references provide a key to further investigation.
Download or read book Superalloys 2016 written by Mark C. Hardy and published by Wiley-TMS. This book was released on 2016-10-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the Proceedings 13th International Symposium on Superalloys
Download or read book Atlas of Fatigue Curves written by Howard E. Boyer and published by ASM International. This book was released on 1985-12-31 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains more than 500 fatigue curves for industrial ferrous and nonferrous alloys. Also includes an explanation of fatigue testing and interpretation of test results. Each curve is presented independently and includes an explanation of its particular importance.
Download or read book Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials written by J. Shingledecker and published by ASM International. This book was released on 2019-10-01 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings from: EPRI’s 9th International Conference on Advances in Materials Technology for Fossil Power Plants and the 2nd International 123HiMAT Conference on High-Temperature Materials
Download or read book High Cycle Fatigue written by Theodore Nicholas and published by Elsevier. This book was released on 2006-07-07 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr Theodore Nicholas ran the High Cycle Fatigue Program for the US Air Force between 1995 and 2003 at Wright-Patterson Air Force Base, and is one of the world's leading authorities on the subject, having authored over 250 papers in leading archival journals and books. Bringing his plethora of expertise to this book, Dr Nicholas discusses the subject of high cycle fatigue (HCF) from an engineering viewpoint in response to a series of HCF failures in the USAF and the concurrent realization that HCF failures in general were taking place universally in both civilian and military engines. Topic covered include: - Constant life diagrams - Fatigue limits under combined LCF and HCF - Notch fatigue under HCF conditions - Foreign object damage (FOD) - Brings years of the Author's US Air Force experience in high cycle fatigue together in one text - Discusses HCF in the context of recent international military and civilian engine failures