EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Continuum Solvation Models in Chemical Physics

Download or read book Continuum Solvation Models in Chemical Physics written by Benedetta Mennucci and published by John Wiley & Sons. This book was released on 2008-02-28 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the theory and applications of continuum solvation models. The main focus is on the quantum-mechanical version of these models, but classical approaches and combined or hybrid techniques are also discussed. Devoted to solvation models in which reviews of the theory, the computational implementation Solvation continuum models are treated using the different points of view from experts belonging to different research fields Can be read at two levels: one, more introductive, and the other, more detailed (and more technical), on specific physical and numerical aspects involved in each issue and/or application Possible limitations or incompleteness of models is pointed out with, if possible, indications of future developments Four-colour representation of the computational modeling throughout.

Book The Chemical Physics of Solvation

Download or read book The Chemical Physics of Solvation written by Revaz R. Dogonadze and published by Elsevier Science & Technology. This book was released on 1985 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of solvation as a concept which covers quite generally the interactions between a molecular solute particle and a macroscopic body of surrounding solvent is well recognized. Solvation plays a major role in the distribution of elements in the geo- and hydrosphere, and most chemical and biological processes involve solvated reactants and products, the electronic and molecular structure of which are strongly determined by solvation. This three-volume monograph has been written collectively by 50 authors from 14 countries who are specialists in different areas of solvation science. Part A deals with the theory of solvation; Part B is entirely devoted to spectroscopy of solvation; and Part C covers solvation phenomena in specific physical, chemical and biological systems. The volumes will be an invaluable reference source for physicists, physical chemists and biophysicists undertaking investigations into the diversified and fascinating areas of the physics and chemical physics of solvation at postgraduate and professional research levels.

Book Molecular Theory of Solvation

Download or read book Molecular Theory of Solvation written by F. Hirata and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.

Book Molecular Response Functions for the Polarizable Continuum Model

Download or read book Molecular Response Functions for the Polarizable Continuum Model written by Roberto Cammi and published by Springer Science & Business Media. This book was released on 2013-10-10 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Brief presents the main aspects of the response functions theory (RFT) for molecular solutes described within the framework of the Polarizable Continuum Model (PCM). PCM is a solvation model for a Quantum Mechanical molecular system in which the solvent is represented as a continuum distribution of matter. Particular attention is devoted to the description of the basic features of the PCM model, and to the problems characterizing the study of the response function theory for molecules in solution with respect to the analogous theory on isolated molecules.

Book Solvent Effects and Chemical Reactivity

Download or read book Solvent Effects and Chemical Reactivity written by Orlando Tapia and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.

Book Solvation Effects on Molecules and Biomolecules

Download or read book Solvation Effects on Molecules and Biomolecules written by Sylvio Canuto and published by Springer Science & Business Media. This book was released on 2010-07-03 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an interdisciplinary treatise on the theoretical approach to solvation problems. It describes the essential details of the theoretical methods and places them into the context of modern applications, and hence is of broad interest to theoreticians and experimentalists. The assembly of these modern methods and applications into one volume is a unique contribution to date and gives a broad and ample description of the field in its present stage of development.

Book The chemical physics of solvation

Download or read book The chemical physics of solvation written by R. R. Dogonadze and published by . This book was released on 1985 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reviews in Computational Chemistry

Download or read book Reviews in Computational Chemistry written by Abby L. Parrill and published by John Wiley & Sons. This book was released on 2015-04-29 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered around molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 28 include: Free-energy Calculations with Metadynamics Polarizable Force Fields for Biomolecular Modeling Modeling Protein Folding Pathways Assessing Structural Predictions of Protein-Protein Recognition Kinetic Monte Carlo Simulation of Electrochemical Systems Reactivity and Dynamics at Liquid Interfaces

Book Atomic Scale Modelling of Electrochemical Systems

Download or read book Atomic Scale Modelling of Electrochemical Systems written by Marko M. Melander and published by John Wiley & Sons. This book was released on 2021-09-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Book Advances in Chemical Physics

Download or read book Advances in Chemical Physics written by Ilya Prigogine and published by John Wiley & Sons. This book was released on 2003-04-14 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of the leading forum in chemical physics Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice. The Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. This stand-alone, special topics volume reports recent advances in electron-transfer research, with significant, up-to-date chapters by internationally recognized researchers. Volume 123 collects innovative papers on "Transition Path Sampling," "Dynamics of Chemical Reactions and Chaos," "The Role of Self Similarity in Renormalization Group Theory," and several other related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.

Book Supramolecular Assemblies Based on Electrostatic Interactions

Download or read book Supramolecular Assemblies Based on Electrostatic Interactions written by M. Ali Aboudzadeh and published by Springer Nature. This book was released on 2022-05-21 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent advances and current knowledge in the field of supramolecular assemblies based on electrostatic interactions. The flexibility and simplicity of constructing assemblies is explained via several examples, illustrations, figures, case studies, and historical perspectives. Moreover, as there is an increasing demand for the use of theoretical and computational models of the interaction strengths for assisting with the experimental studies, one chapter specifically focuses on the "modelling'' of supramolecular assemblies. Finally, various aspects of the recent advances of the field as well as potential future opportunities are discussed, with the goal being to stimulate critical discussions among the community and to encourage further discovery. This volume aims to inspire and guide fellow scientists and students working in this field and thus it provides a great tool for all researchers, graduates and professionals specializing on the topic.

Book Handbook of Computational Chemistry

Download or read book Handbook of Computational Chemistry written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2012-01-14 with total page 1451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.

Book Enantioselection in Asymmetric Catalysis

Download or read book Enantioselection in Asymmetric Catalysis written by Ilya D. Gridnev and published by CRC Press. This book was released on 2016-11-03 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of asymmetric catalysis is currently one of the hottest areas in chemistry. This unique book focuses on the mechanism of enantioselectivity in asymmetric catalysis, rather than asymmetric catalysis from the synthetic view. It describes reliable, experimentally and computationally supported mechanisms, and discusses the danger of so-called "plausible" or "accepted" mechanisms leading to wrong conclusions. It draws parallels to enzymatic catalysis in biochemistry, and examines in detail the physico-chemical aspects of enantioselective catalysis.

Book Trends and Perspectives in Modern Computational Science

Download or read book Trends and Perspectives in Modern Computational Science written by George Maroulis and published by CRC Press. This book was released on 2006-10-27 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains a collection of the lectures of the invited speakers presented at the International Conference of Computational methods in Science and Engineering (ICCMSE 2006), held in Chania, Greece, October 2006. This book presents developments of Computational Science pertinent to Physics, Chemistry, Biology, Medicine, Mathematics and Engineering.

Book Atomic Scale Modelling of Electrochemical Systems

Download or read book Atomic Scale Modelling of Electrochemical Systems written by Marko M. Melander and published by John Wiley & Sons. This book was released on 2021-09-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Book Practical Aspects of Computational Chemistry

Download or read book Practical Aspects of Computational Chemistry written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Practical Aspects of Computational Chemistry" presents contributions on a range of aspects of Computational Chemistry applied to a variety of research fields. The chapters focus on recent theoretical developments which have been used to investigate structures and properties of large systems with minimal computational resources. Studies include those in the gas phase, various solvents, various aspects of computational multiscale modeling, Monte Carlo simulations, chirality, the multiple minima problem for protein folding, the nature of binding in different species and dihydrogen bonds, carbon nanotubes and hydrogen storage, adsorption and decomposition of organophosphorus compounds, X-ray crystallography, proton transfer, structure-activity relationships, a description of the REACH programs of the European Union for chemical regulatory purposes, reactions of nucleic acid bases with endogenous and exogenous reactive oxygen species and different aspects of nucleic acid bases, base pairs and base tetrads.

Book Computational Materials  Chemistry  and Biochemistry  From Bold Initiatives to the Last Mile

Download or read book Computational Materials Chemistry and Biochemistry From Bold Initiatives to the Last Mile written by Sadasivan Shankar and published by Springer Nature. This book was released on 2021-01-25 with total page 1344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad and nuanced overview of the achievements and legacy of Professor William (“Bill”) Goddard in the field of computational materials and molecular science. Leading researchers from around the globe discuss Goddard’s work and its lasting impacts, which can be seen in today’s cutting-edge chemistry, materials science, and biology techniques. Each section of the book closes with an outline of the prospects for future developments. In the course of a career spanning more than 50 years, Goddard’s seminal work has led to dramatic advances in a diverse range of science and engineering fields. Presenting scientific essays and reflections by students, postdoctoral associates, collaborators and colleagues, the book describes the contributions of one of the world’s greatest materials and molecular scientists in the context of theory, experimentation, and applications, and examines his legacy in each area, from conceptualization (the first mile) to developments and extensions aimed at applications, and lastly to de novo design (the last mile). Goddard’s passion for science, his insights, and his ability to actively engage with his collaborators in bold initiatives is a model for us all. As he enters his second half-century of scientific research and education, this book inspires future generations of students and researchers to employ and extend these powerful techniques and insights to tackle today’s critical problems in biology, chemistry, and materials. Examples highlighted in the book include new materials for photocatalysts to convert water and CO2 into fuels, novel catalysts for the highly selective and active catalysis of alkanes to valuable organics, simulating the chemistry in film growth to develop two-dimensional functional films, and predicting ligand–protein binding and activation to enable the design of targeted drugs with minimal side effects.