EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computationally Efficient Online Model Based Control and Estimation for Lithium ion Batteries

Download or read book Computationally Efficient Online Model Based Control and Estimation for Lithium ion Batteries written by Ji Liu and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents a framework for computationally-efficient, health-consciousonline state estimation and control in lithium-ion batteries. The framework buildson three main tools, namely, (i) battery model reformulation and (ii) pseudo-spectral optimization for (iii) differential flatness. All of these tools already existin the literature. However, their application to electrochemical battery estimationand control, both separately and in an integrated manner, represents a significantaddition to the literature. The dissertation shows that these tools, together, providesignificant improvements in computational efficiency for both online moving horizonbattery state estimation and online health-conscious model predictive battery con-trol. These benefits are demonstrated both in simulation and using an experimentalcase study.Two key facts motivate this dissertation. First, lithium-ion batteries are widelyused for different applications due to their low self-discharge rates, lack of memoryeffects, and high power/energy densities compared to traditional lead-acid and nickel-metal hydride batteries. Second, lithium-ion batteries are also vulnerable to agingand degradation mechanisms, such as lithium plating, some of which can lead tosafety issues. Conventional battery management systems (BMS) typically use model-free control strategies and therefore do not explicitly optimize the performance, lifespan, and cost of lithium-ion battery packs. They typically avoid internal damageby constraining externally-measured variables, such as battery voltage, current,and temperature. When pushed to charge a battery quickly without inducingexcessive damage, these systems often follow simple and potentially sub-optimalcharge/discharge trajectories, e.g., the constant-current/constant-voltage (CCCV)charging strategy. While the CCCV charging strategy is simple to implement,it suffers from its poor ability to explicitly control the internal variables causingbattery aging, such as side reaction overpotentials. Another disadvantage is theinability of this strategy to adapt to changes in battery dynamics caused by aging.Model-based control has the potential to alleviate many of the above limitationsof classical battery management systems. A model-based control system can estimate the internal state of a lithium-ion battery and use the estimated stateto adjust battery charging/discharging in a manner that avoids damaging sidereactions. By doing so, model-based control can (i) prolong battery life, (ii) improvebattery safety, (iii) increase battery energy storage capacity, (iv) decrease internaldamage/degradation, and (v) adapt to changes in battery dynamics resulting fromaging. These potential benefits are well-documented in the literature. However,one major challenge remains, namely, the computational complexity associatedwith online model-based battery state estimation and control. The goal of thisdissertation is to address this challenge by making five contributions to the literature.Specifically: Chapter 2 exploits the differential flatness of solid-phase lithium-ion batterydiffusion dynamics, together with pseudo-spectral optimization and diffusionmodel reformulation, to decrease the computational load associated withhealth-conscious battery trajectory optimization significantly. This contribu-tion forms a foundation for much of the subsequent work in this dissertation,but is limited to isothernal single-particle battery models with significanttime scale separation between anode- and cathode-side solid-phase diffusiondynamics. Chapter 3 extends the results of Chapter 2 in two ways. First , it exploitsthe law of conservation of charge to enable flatness-based, health-consciousbattery trajectory optimization for single particle battery models even in theabsence of time scale separation between the negative and positive electrodes.Second, it performs this optimization for a combined thermo-electrochemicalbattery model, thereby relaxing the above assumption of isothermal batterybehavior and highlighting the benefits of flatness-based optimization for anonlinear battery model. Chapter 4 presents a framework for flatness-based pseudo-spectral combinedstate and parameter estimation in lumped-parameter nonlinear systems.This framework enables computationally-efficient total least squares (TLS)estimation for lumped-parameter nonlinear systems. This is quite relevant topractical lithium-ion battery systems, where both battery input and outputmeasurements can be quite noisy. Chapter 5 utilizes the above flatness-based TLS estimation algorithm formoving horizon state estimation using a coupled thermo-electrochemicalequivalent circuit model of lithium-ion battery dynamics. Chapter 6 extends the battery estimation framework from Chapter 5 to enablemoving horizon, flatness-based TLS state estimation in thermo-electrochemical single-particle lithium-ion battery models, and demonstrates this frameworkusing laboratory experiments.The overall outcome of this dissertation is an integrated set of tools, all of themexploiting model reformulation, differential flatness, and pseudo-spectral methods,for computationally efficient online state estimation and health-conscious controlin lithium-ion batteries.

Book Modeling and State Estimation of Lithium Ion Battery Packs for Application in Battery Management Systems

Download or read book Modeling and State Estimation of Lithium Ion Battery Packs for Application in Battery Management Systems written by Manoj Mathew and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As lithium-ion (Li-Ion) battery packs grow in popularity, so do the concerns of its safety, reliability, and cost. An efficient and robust battery management system (BMS) can help ease these concerns. By measuring the voltage, temperature, and current for each cell, the BMS can balance the battery pack, and ensure it is operating within the safety limits. In addition, these measurements can be used to estimate the remaining charge in the battery (state-of-charge (SOC)) and determine the health of the battery (state-of-health (SOH)). Accurate estimation of these battery and system variables can help improve the safety and reliability of the energy storage system (ESS). This research aims to develop high-fidelity battery models and robust SOC and SOH algorithms that have low computational cost and require minimal training data. More specifically, this work will focus on SOC and SOH estimation at the pack-level, as well as modeling and simulation of a battery pack. An accurate and computationally efficient Li-Ion battery model can be highly beneficial when developing SOC and SOH algorithms on the BMS. These models allow for software-in-the-loop (SIL) and hardware-in-the-loop (HIL) testing, where the battery pack is simulated in software. However, development of these battery models can be time-consuming, especially when trying to model the effect of temperature and SOC on the equivalent circuit model (ECM) parameters. Estimation of this relationship is often accomplished by carrying out a large number of experiments, which can be too costly for many BMS manufacturers. Therefore, the first contribution of this research is to develop a comprehensive battery model, where the ECM parameter surface is generated using a set of carefully designed experiments. This technique is compared with existing approaches from literature, and it is shown that by using the proposed method, the same degree of accuracy can be obtained while requiring significantly less experimental runs. This can be advantageous for BMS manufacturers that require a high-fidelity model but cannot afford to carry out a large number of experiments. Once a comprehensive model has been developed for SIL and HIL testing, research was carried out in advancing SOH and SOC algorithms. With respect to SOH, research was conducted in developing a steady and reliable SOH metric that can be determined at the cell level and is stable at different battery operating conditions. To meet these requirements, a moving window direct resistance estimation (DRE) algorithm is utilized, where the resistance is estimated only when the battery experiences rapid current transients. The DRE approach is then compared with more advanced resistance estimation techniques such as extended Kalman filter (EKF) and recursive least squares (RLS). It is shown that by using the proposed algorithm, the same degree of accuracy can be achieved as the more advanced methods. The DRE algorithm does, however, have a much lower computational complexity and therefore, can be implemented on a battery pack composed of hundreds of cells. Research has also been conducted in converting these raw resistance values into a stable SOH metric. First, an outlier removal technique is proposed for removing any outliers in the resistance estimates; specifically, outliers that are an artifact of the sampling rate. The technique involves using an adaptive control chart, where the bounds on the control chart change as the internal resistance of the battery varies during operation. An exponentially weighted moving average (EWMA) is then applied to filter out the noise present in the raw estimates. Finally, the resistance values are filtered once more based on temperature and battery SOC. This additional filtering ensures that the SOH value is independent of the battery operating conditions. The proposed SOH framework was validated over a 27-day period for a lithium iron phosphate (LFP) battery. The results show an accurate estimation of battery resistance over time with a mean error of 1.1% as well as a stable SOH metric. The findings are significant for BMS developers who have limited computational resources but still require a robust and reliable SOH algorithm. Concerning SOC, most publications in literature examine SOC estimation at the cell level. Determining the SOC for a battery pack can be challenging, especially an estimate that behaves logically to the battery user. This work proposes a three-level approach, where the final output from the algorithm is a well-behaved pack SOC estimate. The first level utilizes an EKF for estimating SOC while an RLS approach is used to adapt the model parameters. To reduce computational time, both algorithms will be executed on two specific cells: the first cell to charge to full and the first cell to discharge to empty. The second level consists of using the SOC estimates from these two cells and estimating a pack SOC value. Finally, a novel adaptive coulomb counting approach is proposed to ensure the pack SOC estimate behaves logically. The accuracy of the algorithm is tested using a 40 Ah Li-Ion battery. The results show that the algorithm produces accurate and stable SOC estimates. Finally, this work extends the developed comprehensive battery model to examine the effect of replacing damaged cells in a battery pack with new ones. The cells within the battery pack vary stochastically, and the performance of the entire pack is evaluated under different conditions. The results show that by changing out cells in the battery pack, the SOH of the pack can be maintained indefinitely above a specific threshold value. In situations where the cells are checked for replacement at discrete intervals, referred to as maintenance event intervals, it is found that the length of the interval is dependent on the mean time to failure of the individual cells. The simulation framework, as well as the results from this paper, can be utilized to better optimize Li-ion battery pack design in electric vehicles (EVs) and make long-term deployment of EVs more economically feasible.

Book 11th Symposium for Fuel Cell and Battery Modelling and Experimental Validation

Download or read book 11th Symposium for Fuel Cell and Battery Modelling and Experimental Validation written by kolektiv autorů and published by Librix.eu. This book was released on 2014-03-05 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Modeling  Reformulation  and Efficient Simulation of Lithium ion Batteries

Download or read book Multiscale Modeling Reformulation and Efficient Simulation of Lithium ion Batteries written by Paul Wesley Clairday Northrop and published by . This book was released on 2014 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries are ubiquitous in modern society, ranging from relatively low-power applications, such as cell phones, to very high demand applications such as electric vehicles and grid storage. The higher power and energy density of lithium-ion batteries compared to other forms of electrochemical energy storage makes them very popular in such a wide range of applications. In order to engineer improved battery design and develop better control schemes, it is important to understand internal and external battery behavior under a variety of possible operating conditions. This can be achieved using physical experiments, but those can be costly and time consuming, especially for life-studies which can take years to perform. Here using mathematical models based on porous electrode theory to study the internal behavior of lithium-ion batteries is examined. As the physical phenomena which govern battery performance are described using several nonlinear partial differential equations, simulating battery models can quickly become computationally expensive. Thus, much of this work focuses on reformulating the battery model to improve simulation efficiency, allowing for use to solve problems which require many iterations to converge (e.g. optimization), or in applications which have limited computational resources (e.g. control). Computational time is improved while maintaining accuracy by using a coordinate transformation and orthogonal collocation to reduce the number of equations which must be solved using the method of lines. Orthogonal collocation is a spectral method which approximates all dependent variables as a series solution of trial functions. This approach discretizes the spatial derivatives with higher order accuracy than standard finite difference approach. The coefficients are determined by requiring the governing equation be satisfied at specified collocation points, resulting in a system of differential algebraic equations (DAEs) which must be solved with time as the only differential variable. The system of DAEs can be solved using standard time-adaptive integrating solvers. The error and simulation time of the battery model of orthogonal collocation is analyzed. The improved computational efficiency allows for more physical phenomena to be considered in the reformulated model. Lithium-ion batteries exposed to high temperatures can lead to internal damage and capacity fade. In extreme cases this can lead to thermal runaway, a dangerous scenario in which energy is rapidly released. In the other end of the temperature spectrum, low temperatures can significantly impede performance by increasing diffusion resistance. Although accounting for thermal effects increases the computational cost, the model reformulation allows for these important phenomena to be considered in single cell as well as 2D and multicell stack battery models. The growth of the solid electrolyte interface (SEI) layer contributes to capacity fade by means of a side reaction which removes lithium from the system irreversibly as well as increasing the resistance of the transfer lithium-ion from the electrolyte to the active material. As the reaction kinetics are not well understood, several proposed mechanisms are considered and implemented into the continuum reformulated model. The effects of SEI layer growth on a lithium-ion cell over 10,000 cycles is simulated and analyzed. Furthermore, a kinetic Monte Carlo model is developed and implemented to study the heterogeneous growth of the solid electrolyte layer. This is a stochastic approach which considers lithium-ion diffusion, intercalation, and side reactions. As millions of individual time steps may be performed for a single cycle, it is very computationally expensive, but allows for simulation of surface phenomena which are ignored in continuum models.

Book Meta heuristic and Evolutionary Algorithms for Engineering Optimization

Download or read book Meta heuristic and Evolutionary Algorithms for Engineering Optimization written by Omid Bozorg-Haddad and published by John Wiley & Sons. This book was released on 2017-10-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Book State Estimation Strategies in Lithium ion Battery Management Systems

Download or read book State Estimation Strategies in Lithium ion Battery Management Systems written by Shunli Wang and published by Elsevier. This book was released on 2023-07-14 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel. Introduces lithium-ion batteries, characteristics and core state parameters Examines battery equivalent modeling and provides advanced methods for battery state estimation Analyzes current technology and future opportunities

Book Battery System Modeling

Download or read book Battery System Modeling written by Shunli Wang and published by Elsevier. This book was released on 2021-06-23 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Book Efficient Simulation and Model Reformulation of Two dimensional Electrochemical Thermal Behavior of Lithium ion Batteries

Download or read book Efficient Simulation and Model Reformulation of Two dimensional Electrochemical Thermal Behavior of Lithium ion Batteries written by and published by . This book was released on 2015 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behavior of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.

Book Towards a Systems level Understanding of Battery Systems

Download or read book Towards a Systems level Understanding of Battery Systems written by Akshay Subramaniam and published by . This book was released on 2021 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current imperatives of electrification and decarbonization entail significant improvements in energy density, performance, and cost metrics for battery technology. This has motivated active research into new materials, cell designs, and external controls to ensure safe and efficient operation. Modeling and simulation approaches have a powerful complementary function in this regard, most notably exemplified by the models for Lithium-ion batteries by Newman and co-workers. The overarching theme of this dissertation is thus the development and application of electrochemical modeling approaches at multiple scales in problems relevant to the abovementioned contexts. At the systems level, the development of more intelligent and powerful Battery Management Systems is enabled by fast electrochemical models, which must balance competing considerations of accuracy, computational efficiency, and ease of parameterization. To this end, we report a rigorous and generalized methodology for "upscaling" continuum electrochemical models. This approach, based on the visualization of a battery as Tanks-in-Series, has been demonstrated for both Lithium-ion and more complex Lithium-sulfur batteries. With respect to full models, voltage prediction errors below 20 mV are achieved for high-energy cells in most practical cases. 30 mV errors are achieved for aggressive conditions of high-rate operation at sub-zero ambient temperatures, illustrating their practical utility. This approach results in improved computational speed since each conservation law is replaced by a relatively simple volume-averaged differential or algebraic equation. For examples of large-scale problems, this leads to 10x savings in computation time over fast implementations of conventional models, illustrating competitiveness for real-time applications. In the development of next-generation chemistries, continuum models can serve as a framework for the analysis and interpretation of experimental data, while providing design guidance and helping determine desirable operating regimes. Electrochemical phenomena at different length and time scales are manifested during operation through voltage and temperature signatures, cycle life, and coulombic efficiency. Optimization of cell-level metrics is thus predicated on their correlation with the internal electrochemistry. This entails the integration of electrochemical models at different levels of detail in a computationally efficient and robust manner. To this end, the second half of this dissertation describes our efforts to develop a simulation framework for the modeling of Lithium-metal systems. We first describe a robust computational method to simulate Poisson Nernst Planck (PNP) models for Lithium symmetric cells characterized by thin double layers. This can be leveraged in applications where computational efficiency is of salience, such as cycling simulations and parameterization by coupling kinetic models of interest. This is demonstrated by a systems level method, enabling the quick evaluation of candidate mechanisms appropriately expressed as time-varying rate constants, making it useful for understanding the phenomena underpinning voltage transitions in Lithium symmetric cells. This is followed by a description of a preliminary electrochemical-mechanical model for Li metal interfaces, which is expected to serve as basis for more sophisticated electrochemical-mechanical models for Li metal systems operating under external pressure. We expect these approaches to advance fundamental understanding and design of Li-metal batteries, while creating accessible computational tools to complement experimental studies. Taken together, these contributions are envisaged to advance the knowledge base for model-based design as well as Battery Management Systems, particularly in anticipation of the commercialization of emerging battery chemistries.

Book Modelling  Simulation and Control of Thermal Energy Systems

Download or read book Modelling Simulation and Control of Thermal Energy Systems written by Kwang Y. Lee and published by MDPI. This book was released on 2020-11-03 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.

Book A Computationally Efficient Online Optimal Charging Algorithm to Minimise Solid Electrolyte Interface Layer Growth in Lithium ion Battery

Download or read book A Computationally Efficient Online Optimal Charging Algorithm to Minimise Solid Electrolyte Interface Layer Growth in Lithium ion Battery written by Muhammad Sajjad Sabir Malik and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Battery Management System for Future Electric Vehicles

Download or read book Battery Management System for Future Electric Vehicles written by Dirk Söffker and published by MDPI. This book was released on 2020-11-09 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components.

Book Modeling and State Estimation of Automotive Lithium Ion Batteries

Download or read book Modeling and State Estimation of Automotive Lithium Ion Batteries written by Shunli Wang and published by CRC Press. This book was released on 2024-07-16 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to evaluate and improve the state of charge (SOC) and state of health (SOH) of automotive lithium-ion batteries. The authors first introduce the basic working principle and dynamic test characteristics of lithium-ion batteries. They present the dynamic transfer model, compare it with the traditional second-order reserve capacity (RC) model, and demonstrate the advantages of the proposed new model. In addition, they propose the chaotic firefly optimization algorithm and demonstrate its effectiveness in improving the accuracy of SOC and SOH estimation through theoretical and experimental analysis. The book will benefit researchers and engineers in the new energy industry and provide students of science and engineering with some innovative aspects of battery modeling.

Book Model Based Optimal Control  Estimation  and Validation of Lithium Ion Batteries

Download or read book Model Based Optimal Control Estimation and Validation of Lithium Ion Batteries written by Hector Eduardo Perez and published by . This book was released on 2016 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

Book Nonlinear Modeling

Download or read book Nonlinear Modeling written by Johan A. K. Suykens and published by Springer Science & Business Media. This book was released on 1998-06-30 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of eight contributions presents advanced black-box techniques for nonlinear modeling. The methods discussed include neural nets and related model structures for nonlinear system identification, enhanced multi-stream Kalman filter training for recurrent networks, the support vector method of function estimation, parametric density estimation for the classification of acoustic feature vectors in speech recognition, wavelet based modeling of nonlinear systems, nonlinear identification based on fuzzy models, statistical learning in control and matrix theory, and nonlinear time- series analysis. The volume concludes with the results of a time- series prediction competition held at a July 1998 workshop in Belgium. Annotation copyrighted by Book News, Inc., Portland, OR.

Book Optimization for Control  Observation and Safety

Download or read book Optimization for Control Observation and Safety written by Guillermo Valencia-Palomo and published by MDPI. This book was released on 2020-04-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical optimization is the selection of the best element in a set with respect to a given criterion. Optimization has become one of the most used tools in control theory to compute control laws, adjust parameters (tuning), estimate states, fit model parameters, find conditions in order to fulfill a given closed-loop property, among others. Optimization also plays an important role in the design of fault detection and isolation systems to prevent safety hazards and production losses that require the detection and identification of faults, as early as possible to minimize their impacts by implementing real-time fault detection and fault-tolerant systems. Recently, it has been proven that many optimization problems with convex objective functions and linear matrix inequality (LMI) constraints can be solved easily and efficiently using existing software, which increases the flexibility and applicability of the control algorithms. Therefore, real-world control systems need to comply with several conditions and constraints that have to be taken into account in the problem formulation, which represents a challenge in the application of the optimization algorithms. This book offers an overview of the state-of-the-art of the most advanced optimization techniques and their applications in control engineering.