EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Neuroscience Models at Different Levels of Abstraction for Synaptic Plasticity  Astrocyte Modulation of Synchronization and Systems Memory Consolidation

Download or read book Computational Neuroscience Models at Different Levels of Abstraction for Synaptic Plasticity Astrocyte Modulation of Synchronization and Systems Memory Consolidation written by Lisa Blum Moyse and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, theoretical models with increasing levels of abstraction are developed to address questions arising from neuroscience experiments. They are studied using numerical and analytical approaches. With Laurent Venance's laboratory (Paris), we have developed an ITDP (input-timing-dependent plasticity) protocol model for the plasticity of cortico- and thalamo-striatal synapses. The model has been calibrated with ex vivo data and will be used to determine the presence of synaptic plasticity in vivo, in behavioral experiments aimed at determining the role of cortical and thalamic inputs in motor learning. At the level of neuronal populations, I have studied the modulation of neuronal collective behaviors by astrocytes, in particular Up-Down synchronization, a spontaneous alternation between periods of high collective activity and periods of silence. I have proposed rate and spiking neural network models of interconnected populations of neurons and astrocytes. They offer explanations of how astrocytes induce Up-Down transitions. Astrocytes are also probably involved in the generation of epileptic seizures, during which neuronal synchronization is impaired. Based on the above models, I have developed a neuron-astrocyte network with a cluster connectivity, showing the transition between Up-Down dynamics and events of very high activity mimicking an epileptic seizure. Finally, at the level of the brain itself, I studied the standard theory of consolidation, according to which short-term memory in the hippocampus enables the consolidation of long-term memory in the neocortex. I have sought to explain this phenomenon by integrating biological hypotheses - the size of the neocortex explaining the slowness of learning, and neurogenesis in the hippocampus explaining the erasure of its memory - into a model of interconnected neural fields that well reproduces the main features of the theory.

Book Computational Systems Biology Of Synaptic Plasticity  Modelling Of Biochemical Pathways Related To Memory Formation And Impairement

Download or read book Computational Systems Biology Of Synaptic Plasticity Modelling Of Biochemical Pathways Related To Memory Formation And Impairement written by Don Kulasiri and published by #N/A. This book was released on 2017-06-09 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the power of mathematical thinking in understanding the biological complexity that exists within the brain. It looks at the latest research on modelling of biochemical pathways within synapses, and provides a clear background for the study of mathematical models related to systems biology. Discussion then focusses on developments in computational models based on networks linked to synaptic plasticity. The models are used to understand memory formation and impairment and they provide a mathematical basis for memory research.Computational Systems Biology of Synaptic Plasticity is a valuable source of knowledge to postgraduate students and researchers in computational systems biology, and as a reference book for various techniques that are needed in modelling biological processes.

Book Computational Models for Neuroscience

Download or read book Computational Models for Neuroscience written by Robert Hecht-Nielsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formal study of neuroscience (broadly defined) has been underway for millennia. For example, writing 2,350 years ago, Aristotle! asserted that association - of which he defined three specific varieties - lies at the center of human cognition. Over the past two centuries, the simultaneous rapid advancements of technology and (conse quently) per capita economic output have fueled an exponentially increasing effort in neuroscience research. Today, thanks to the accumulated efforts of hundreds of thousands of scientists, we possess an enormous body of knowledge about the mind and brain. Unfortunately, much of this knowledge is in the form of isolated factoids. In terms of "big picture" understanding, surprisingly little progress has been made since Aristotle. In some arenas we have probably suffered negative progress because certain neuroscience and neurophilosophy precepts have clouded our self-knowledge; causing us to become largely oblivious to some of the most profound and fundamental aspects of our nature (such as the highly distinctive propensity of all higher mammals to automatically seg ment all aspects of the world into distinct holistic objects and the massive reorganiza tion of large portions of our brains that ensues when we encounter completely new environments and life situations). At this epoch, neuroscience is like a huge collection of small, jagged, jigsaw puz zle pieces piled in a mound in a large warehouse (with neuroscientists going in and tossing more pieces onto the mound every month).

Book Computational Models of Brain and Behavior

Download or read book Computational Models of Brain and Behavior written by Ahmed A. Moustafa and published by John Wiley & Sons. This book was released on 2017-09-18 with total page 845 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.

Book Computational Systems Biology of Synaptic Plasticity

Download or read book Computational Systems Biology of Synaptic Plasticity written by Don Kulasiri and published by Wspc (Europe). This book was released on 2017 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the power of mathematical thinking in understanding the biological complexity that exists within the brain. It looks at the latest research on modelling of biochemical pathways within synapses, and provides a clear background for the study of mathematical models related to systems biology. Discussion then focusses on developments in computational models based on networks linked to synaptic plasticity. The models are used to understand memory formation and impairment and they provide a mathematical basis for memory research. Computational Systems Biology of Synaptic Plasticity is a valuable source of knowledge to postgraduate students and researchers in computational systems biology, and as a reference book for various techniques that are needed in modelling biological processes.

Book Emergent neural computation from the interaction of different forms of plasticity

Download or read book Emergent neural computation from the interaction of different forms of plasticity written by Cristina Savin and published by Frontiers Media SA. This book was released on 2016-03-22 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of cortical circuits: it enables the brain to learn regularities in its sensory inputs, to remember the past, and to recover function after injury. While much of the research into learning and memory has focused on forms of Hebbian plasticity at excitatory synapses (LTD/LTP, STDP), several other plasticity mechanisms have been characterized experimentally, including the plasticity of inhibitory circuits (Kullmann, 2012), synaptic scaling (Turrigiano, 2011) and intrinsic plasticity (Zhang and Linden, 2003). However, our current understanding of the computational roles of these plasticity mechanisms remains rudimentary at best. While traditionally they are assumed to serve a homeostatic purpose, counterbalancing the destabilizing effects of Hebbian learning, recent work suggests that they can have a profound impact on circuit function (Savin 2010, Vogels 2011, Keck 2012). Hence, theoretical investigation into the functional implications of these mechanisms may shed new light on the computational principles at work in neural circuits. This Research Topic of Frontiers in Computational Neuroscience aims to bring together recent advances in theoretical modeling of different plasticity mechanisms and of their contributions to circuit function. Topics of interest include the computational roles of plasticity of inhibitory circuitry, metaplasticity, synaptic scaling, intrinsic plasticity, plasticity within the dendritic arbor and in particular studies on the interplay between homeostatic and Hebbian plasticity, and their joint contribution to network function.

Book Anatomy and Plasticity in Large Scale Brain Models

Download or read book Anatomy and Plasticity in Large Scale Brain Models written by Markus Butz and published by Frontiers Media SA. This book was released on 2017-01-05 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercomputing facilities are becoming increasingly available for simulating activity dynamics in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity). The papers in this Ebook, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader aware of the methods and models by which large-scale brain networks running on supercomputers can be extended to include anatomical detail and plasticity.

Book Computational Modelling of the Brain

Download or read book Computational Modelling of the Brain written by Michele Giugliano and published by Springer Nature. This book was released on 2022-04-26 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an up-to-date overview of essential concepts and modern approaches to computational modelling, including the use of experimental techniques related to or directly inspired by them. The book introduces, at increasing levels of complexity and with the non-specialist in mind, state-of-the-art topics ranging from single-cell and molecular descriptions to circuits and networks. Four major themes are covered, including subcellular modelling of ion channels and signalling pathways at the molecular level, single-cell modelling at different levels of spatial complexity, network modelling from local microcircuits to large-scale simulations of entire brain areas and practical examples. Each chapter presents a systematic overview of a specific topic and provides the reader with the fundamental tools needed to understand the computational modelling of neural dynamics. This book is aimed at experimenters and graduate students with little or no prior knowledge of modelling who are interested in learning about computational models from the single molecule to the inter-areal communication of brain structures. The book will appeal to computational neuroscientists, engineers, physicists and mathematicians interested in contributing to the field of neuroscience. Chapters 6, 10 and 11 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book The Rewiring Brain

    Book Details:
  • Author : Arjen van Ooyen
  • Publisher : Academic Press
  • Release : 2017-06-23
  • ISBN : 0128038721
  • Pages : 586 pages

Download or read book The Rewiring Brain written by Arjen van Ooyen and published by Academic Press. This book was released on 2017-06-23 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. Reviews the current state of knowledge of structural plasticity in the adult brain Gives a comprehensive overview of computational studies on structural plasticity Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage

Book Modeling Temporal Patterns of Neural Synchronization

Download or read book Modeling Temporal Patterns of Neural Synchronization written by Joel Zirkle and published by . This book was released on 2020 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript. The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.

Book Interaction of Synaptic Plasticity with Oscillations and Connectivity Lesion for Memory and Learning in Neural Network Models

Download or read book Interaction of Synaptic Plasticity with Oscillations and Connectivity Lesion for Memory and Learning in Neural Network Models written by Kwan Tung Li and published by . This book was released on 2021 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning is a common ability, accompanied by gamma oscillation, across species to acquire new knowledge stored in the hippocampus and neocortex into short-term and long-term memory, respectively. Thus, memory is first stored as short-term memory quickly and then consolidated into long-term memory in a longer timescale. Excitatory to excitatory (E → E ) spike-timing-dependent plasticity (STDP), an experimentally observable synaptic plasticity, is a widely used mechanism to form synaptic clusters in neural network models, where memory is proposed to be stored in strengthened synapses within the cluster. However, the interaction between gamma oscillation and STDP is unclear. On the other hand, the role of inhibitory plasticity in memory cluster formation attracts the attention of scientists in recent years, but it is not well understood yet because of the numerous species of inhibitory neurons and their plasticity. Besides, connectivity lesion, such as induced by Alzheimer's disease, causes memory deficits and abnormal gamma oscillation, but its relation to memory cluster is still an open question. My doctoral research thus aimed to study the interaction among different types of synaptic plasticity, gamma oscillation and circuit connectivity in memory learning and recall through computer simulation of the integrate-and-fire neuronal network of excitatory and inhibitory (E-I) neurons. i In the first part of my study, we explored the interaction between gamma oscillation and E → E STDP in an E-I integrate-and-fire neuronal network with triplet STDP, heterosynaptic plasticity, and transmitter-induced plasticity. We show that the plasticity performance depends on the synchronization levels accompanied by the emergence of gamma oscillations. Moreover, gamma oscillation is beneficial to form a unique network structure through synaptic potentiation. Secondly, we were inspired by an experimental result to study the functional role of excitatory to inhibitory ( E → I ) plasticity in memory consolidation through a feedforward two-layer E-I circuit model. We found that E → I plasticity can prevent overexcitation and assist memory cluster formation. We also predict that suitable pulse input to inhibitory neurons can rescue the memory performance deficits in the absence of E → I plasticity. Thirdly, we used E-I neuronal network model to investigate the effect of connectivity reduction as a result of Alzheimer's diseases on the interaction between circuit dynamics and STDP and the rescue of memory performance by optogenetic stimulation found in the experiments. It is found that the firing rate of the persistent activity is increased if connectivity is reduced mildly because of a transition from synchronous state to asynchronous state, while the persistent activity cannot be maintained and the firing rate is reduced with severe connectivity reduction. iv Furthermore, we found that stimulation with gamma frequency in circuits with connectivity lesion is the best for memory rescue because it can suppress the activation of the memory clusters that were initially activated in the lesion circuit. Moreover, we found that connectivity reduction causes the merging of memory clusters and the deterioration of existing memories during learning new memory with STDP. The whole study gives more insight into the co-evolution between microscopic synaptic dynamics, such as synaptic weight change, firing rate and synchronization of neuron spikes, and macroscopic phenomena, like gamma oscillation, memory performance, and connectivity. Our results may have implications in clinical applications to develop suitable brain stimulation schemes for memory rescue in neurodegenerative diseases. Furthermore, the understanding of the interaction among neural connectivity, dynamics, and plasticity may also offer insight into braininspired neural networks in artificial intelligence.

Book Development of a Bio inspired Computational Astrocyte Model for Spiking Neural Networks

Download or read book Development of a Bio inspired Computational Astrocyte Model for Spiking Neural Networks written by Jacob Kiggins and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The mammalian brain is the most capable and complex computing entity known today. For many years there has been research focused on reproducing the brain's processing capabilities. An early example of this endeavor was the perceptron which has become the core building block of neural network models in the deep learning era. Deep learning has had tremendous success in well-defined tasks like object detection, games like go and chess, and automatic speech recognition. In fact, some deep learning models can match and even outperform humans in specific situations. However, in general, they require much more training, have higher power consumption, are more susceptible to noise and adversarial perturbations, and have very different behavior than their biological counterparts. In contrast, spiking neural network models take a step closer to biology, and in some cases behave identically to measurements of real neurons. Though there has been advancement, spiking neural networks are far from reaching their full potential, in part because the full picture of their biological underpinnings is unclear. This work attempts to reduce that gap further by exploring a bio-inspired configuration of spiking neurons coupled with a computational astrocyte model. Astrocytes, initially thought to be passive support cells in the brain are now known to actively participate in neural processing. They are believed to be critical for some processes, such as neural synchronization, self-repair, and learning. The developed astrocyte model is geared towards synaptic plasticity and is shown to improve upon existing local learning rules, as well as create a generalized approach to local spike-timing-dependent plasticity. Beyond generalizing existing learning approaches, the astrocyte is able to leverage temporal and spatial integration to improve convergence, and tolerance to noise. The astrocyte model is expanded to influence multiple synapses and configured for a specific learning task. A single astrocyte paired with a single leaky integrate and fire neuron is shown to converge on a solution in 2, 3, and 4 synapse configurations. Beyond the more concrete improvements in plasticity, this work provides a foundation for exploring supervisory astrocyte-like elements in spiking neural networks, and a framework to implement and extend many three-factor learning rules. Overall, this work brings the field a bit closer to leveraging some of the distinct advantages of biological neural networks."--Abstract.

Book Neurogenesis and Neural Plasticity

Download or read book Neurogenesis and Neural Plasticity written by Catherine Belzung and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together authors working on a wide range of topics to provide an up to date account of the underlying mechanisms and functions of neurogenesis and synaptogenesis in the adult brain. With an increasing understanding of the role of neurogenesis and synaptogenesis it is possible to envisage improvements or novel treatments for a number of diseases and the possibility of harnessing these phenomena to reduce the impact of ageing and to provide mechanisms to repair the brain.

Book The NEURON Book

    Book Details:
  • Author : Nicholas T. Carnevale
  • Publisher : Cambridge University Press
  • Release : 2006-01-12
  • ISBN : 1139447831
  • Pages : 399 pages

Download or read book The NEURON Book written by Nicholas T. Carnevale and published by Cambridge University Press. This book was released on 2006-01-12 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.

Book The Tripartite Synapse

    Book Details:
  • Author : Andrea Volterra
  • Publisher : Oxford University Press, USA
  • Release : 2002
  • ISBN : 9780198508540
  • Pages : 272 pages

Download or read book The Tripartite Synapse written by Andrea Volterra and published by Oxford University Press, USA. This book was released on 2002 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accompanying CD-ROM contains ... "additional images, movies, and animated sequences." -- p. [4] of cover.

Book Dynamical Systems in Neuroscience

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Book Simulating  Analyzing  and Animating Dynamical Systems

Download or read book Simulating Analyzing and Animating Dynamical Systems written by Bard Ermentrout and published by SIAM. This book was released on 2002-01-01 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations. Instructors, students, and researchers will all benefit from this book, which demonstrates how to use software tools to simulate and study sets of equations that arise in a variety of applications. Instructors will learn how to use computer software in their differential equations and modeling classes, while students will learn how to create animations of their equations that can be displayed on the World Wide Web. Researchers will be introduced to useful tricks that will allow them to take full advantage of XPPAUT's capabilities.