EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Learning and Probabilistic Reasoning

Download or read book Computational Learning and Probabilistic Reasoning written by Alexander Gammerman and published by John Wiley & Sons. This book was released on 1996-08-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a unified coverage of the latest research and applications methods and techniques, this book is devoted to two interrelated techniques for solving some important problems in machine intelligence and pattern recognition, namely probabilistic reasoning and computational learning. The contributions in this volume describe and explore the current developments in computer science and theoretical statistics which provide computational probabilistic models for manipulating knowledge found in industrial and business data. These methods are very efficient for handling complex problems in medicine, commerce and finance. Part I covers Generalisation Principles and Learning and describes several new inductive principles and techniques used in computational learning. Part II describes Causation and Model Selection including the graphical probabilistic models that exploit the independence relationships presented in the graphs, and applications of Bayesian networks to multivariate statistical analysis. Part III includes case studies and descriptions of Bayesian Belief Networks and Hybrid Systems. Finally, Part IV on Decision-Making, Optimization and Classification describes some related theoretical work in the field of probabilistic reasoning. Statisticians, IT strategy planners, professionals and researchers with interests in learning, intelligent databases and pattern recognition and data processing for expert systems will find this book to be an invaluable resource. Real-life problems are used to demonstrate the practical and effective implementation of the relevant algorithms and techniques.

Book Bayesian Reasoning and Machine Learning

Download or read book Bayesian Reasoning and Machine Learning written by David Barber and published by Cambridge University Press. This book was released on 2012-02-02 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Book Probabilistic Machine Learning

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Book Machine Learning

    Book Details:
  • Author : Kevin P. Murphy
  • Publisher : MIT Press
  • Release : 2012-08-24
  • ISBN : 0262018020
  • Pages : 1102 pages

Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-08-24 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Book Reasoning with Probabilistic and Deterministic Graphical Models

Download or read book Reasoning with Probabilistic and Deterministic Graphical Models written by Rina Dechter and published by Morgan & Claypool Publishers. This book was released on 2013-12-01 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Book Reasoning with Probabilistic and Deterministic Graphical Models

Download or read book Reasoning with Probabilistic and Deterministic Graphical Models written by Rina Sreedharan and published by Springer Nature. This book was released on 2022-06-01 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Book Reasoning with Probabilistic and Deterministic Graphical Models

Download or read book Reasoning with Probabilistic and Deterministic Graphical Models written by Rina Kraus and published by Springer Nature. This book was released on 2013-12-27 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Book Statistical Relational Artificial Intelligence

Download or read book Statistical Relational Artificial Intelligence written by Luc De Raedt and published by Morgan & Claypool Publishers. This book was released on 2016-03-24 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Book Probabilistic Reasoning in Intelligent Systems

Download or read book Probabilistic Reasoning in Intelligent Systems written by Judea Pearl and published by Elsevier. This book was released on 2014-06-28 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Book Introduction to Statistical Relational Learning

Download or read book Introduction to Statistical Relational Learning written by Lise Getoor and published by MIT Press. This book was released on 2019-09-22 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Book Representing and Reasoning with Probabilistic Knowledge

Download or read book Representing and Reasoning with Probabilistic Knowledge written by Fahiem Bacchus and published by Cambridge, Mass. : MIT Press. This book was released on 1990 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic information has many uses in an intelligent system. This book explores logical formalisms for representing and reasoning with probabilistic information that will be of particular value to researchers in nonmonotonic reasoning, applications of probabilities, and knowledge representation. It demonstrates that probabilities are not limited to particular applications, like expert systems; they have an important role to play in the formal design and specification of intelligent systems in general. Fahiem Bacchus focuses on two distinct notions of probabilities: one propositional, involving degrees of belief, the other proportional, involving statistics. He constructs distinct logics with different semantics for each type of probability that are a significant advance in the formal tools available for representing and reasoning with probabilities. These logics can represent an extensive variety of qualitative assertions, eliminating requirements for exact point-valued probabilities, and they can represent firstshy;order logical information. The logics also have proof theories which give a formal specification for a class of reasoning that subsumes and integrates most of the probabilistic reasoning schemes so far developed in AI. Using the new logical tools to connect statistical with propositional probability, Bacchus also proposes a system of direct inference in which degrees of belief can be inferred from statistical knowledge and demonstrates how this mechanism can be applied to yield a powerful and intuitively satisfying system of defeasible or default reasoning. Fahiem Bacchus is Assistant Professor of Computer Science at the University of Waterloo, Ontario. Contents: Introduction. Propositional Probabilities. Statistical Probabilities. Combining Statistical and Propositional Probabilities Default Inferences from Statistical Knowledge.

Book Probabilistic Inductive Logic Programming

Download or read book Probabilistic Inductive Logic Programming written by Luc De Raedt and published by Springer. This book was released on 2008-02-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.

Book Probabilistic and Causal Inference

Download or read book Probabilistic and Causal Inference written by Hector Geffner and published by Morgan & Claypool. This book was released on 2022-03-10 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Judea Pearl won the 2011 Turing Award “for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning.” This book contains the original articles that led to the award, as well as other seminal works, divided into four parts: heuristic search, probabilistic reasoning, causality, first period (1988–2001), and causality, recent period (2002–2020). Each of these parts starts with an introduction written by Judea Pearl. The volume also contains original, contributed articles by leading researchers that analyze, extend, or assess the influence of Pearl’s work in different fields: from AI, Machine Learning, and Statistics to Cognitive Science, Philosophy, and the Social Sciences. The first part of the volume includes a biography, a transcript of his Turing Award Lecture, two interviews, and a selected bibliography annotated by him.

Book Artificial Intelligence

    Book Details:
  • Author : David L. Poole
  • Publisher : Cambridge University Press
  • Release : 2017-09-25
  • ISBN : 110719539X
  • Pages : 821 pages

Download or read book Artificial Intelligence written by David L. Poole and published by Cambridge University Press. This book was released on 2017-09-25 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.

Book Probabilistic Graphical Models

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Book Foundations of Probabilistic Logic Programming

Download or read book Foundations of Probabilistic Logic Programming written by Fabrizio Riguzzi and published by River Publishers. This book was released on 2018-09-01 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Logic Programming extends Logic Programming by enabling the representation of uncertain information. Probabilistic Logic Programming is at the intersection of two wider research fields: the integration of logic and probability and Probabilistic Programming. Logic enables the representation of complex relations among entities while probability theory is useful for model uncertainty over attributes and relations. Combining the two is a very active field of study. Probabilistic Programming extends programming languages with probabilistic primitives that can be used to write complex probabilistic models. Algorithms for the inference and learning tasks are then provided automatically by the system. Probabilistic Logic programming is at the same time a logic language, with its knowledge representation capabilities, and a Turing complete language, with its computation capabilities, thus providing the best of both worlds. Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. Foundations of Probabilistic Logic Programming aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online.

Book Probabilistic Reasoning in Expert Systems

Download or read book Probabilistic Reasoning in Expert Systems written by Richard E. Neapolitan and published by CreateSpace. This book was released on 2012-06-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.