EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geophysical Monitoring for Geologic Carbon Storage

Download or read book Geophysical Monitoring for Geologic Carbon Storage written by Lianjie Huang and published by John Wiley & Sons. This book was released on 2022-03-09 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Investigation of Coupled Chemo hydro mechanical Processes with Discrete Element Modeling

Download or read book Investigation of Coupled Chemo hydro mechanical Processes with Discrete Element Modeling written by Zhuang Sun and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage of CO2 is proposed as a near-term economically viable approach to mitigate CO2 emissions, and is an example of the coupled chemo-hydro-mechanical processes. Although CO2 injection and enhanced oil recovery are viewed as mature technologies in the oil and gas industry, investigation of all possible implications is necessary for secure and effective long-term CO2 storage. The injection of a large volume of CO2 into target storage formations is usually associated with a number of geomechanical processes that are initiated at the pore scale. Therefore, a pore-scale geomechanical model, i.e. Discrete Element Method (DEM), is of great importance to better understand the underlying pore-scale processes and mechanisms that govern the large-scale CO2 geological storage. In this work, we concentrate on several significant pore-scale coupled phenomena. Firstly, CO2 injection into geological formations involves chemo-mechanical processes and shifts the geochemical equilibrium between the minerals and resident brine, which subsequently induces mineral-brine-CO2 reactions and affects CO2 storage mechanical integrity. We utilize a numerical model that couples the Discrete Element Method (DEM) and the Bonded-Particle Model (BPM) to perform simulations on synthetic rocks that mimic tested rock samples. Numerical results, in agreement with experimental evidence, show that both cement and particle dissolution significantly contribute to rock weakening in sandstones with carbonate/hematite cements and pore-filling carbonate. Secondly, reservoir compaction involves hydro-mechanical processes that induce changes in porosity and permeability, and is a significant concern for the oil and gas production. We develop a grain crushing model based on the DEM to investigate the changes in porosity and permeability under the reservoir stress path. Grain crushing is shown to be the dominant mechanism for significant changes in porosity and permeability under a high effective stress. Samples consisting of large and soft grains tend to be more readily compacted. Finally, fluid injection in the subsurface may induce fractures and is another common hydro-mechanical process. We couple the Discrete Element Method (DEM) to solve for the mechanics of a solid granular medium and the Computational Fluid Dynamics (CFD) to model fluid flow and drag forces. We validate the resolved CFD-DEM numerical model against experiments from the literature and investigate the impact of physical properties and injection parameters. This work reveals how the pore-scale processes contribute to fluid-driven fracture initiation

Book Science of Carbon Storage in Deep Saline Formations

Download or read book Science of Carbon Storage in Deep Saline Formations written by Pania Newell and published by Elsevier. This book was released on 2018-09-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. Includes the underlying scientific research, as well as the risks associated with geological carbon storage Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage Organized by discipline for ease of navigation

Book Micromechanical Testing for the Evaluation of Chemo Mechanical Alteration of CO2 Storage Rocks

Download or read book Micromechanical Testing for the Evaluation of Chemo Mechanical Alteration of CO2 Storage Rocks written by Michael David Aman and published by . This book was released on 2017 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the relationship between the chemically and mechanically coupled alteration of CO2-storage rocks during CO2 geological storage and the ensuing changes in rock properties. I analyzed how the scratch toughness and hardness varied with alteration by CO2-fluid mixtures by employing indentation and scratch test methodologies. Rock samples were selected from the Crystal Geyser site near Green River Utah, where a natural seepage of CO2 altered outcrops of the Entrada sandstone and Summerville siltstone formations near faults over tens of thousands of years. Results from tests on Entrada sandstone and Summerville siltstone from the Crystal Geyser site show that mechanical parameters measured with indentation (indentation hardness, Young's modulus and contact creep compliance rate) and scratching (scratch hardness and scratch toughness) consistently indicated weakening of the rock after CO2-induced alteration. Decreases of measured parameters vary from 14% to 87%. In order to investigate the time scales of variation of mechanical and petrophysical properties differing to those before exposure, I conducted autoclave reaction experiments with Entrada sandstone and Summerville siltstone exposed to either de-ionized water or synthetic brine under reservoir pressure (9-10 MPa) and temperature (80°C) conditions for up to two weeks. I designed and constructed a ructed a scratch testing apparatus to conduct scratches on the laboratory altered rock samples. Scratch toughness and hardness show decreases of up to 60% in the case of entrada sandstone and 92% in the case of Summerville siltstone after CO2-induced alteration in the laboratory. To understand chemical reactions during the laboratory alteration experiments, I conducted parallel experiments using powdered samples of entrada sandstone and Summerville siltstone. I quantified aqueous ion concentrations for fluid samples collected from these autoclave experiments using analytical geochemistry. Dissolution of calcite and silicate cements are the primary reactions identified for both samples during the laboratory experiments. Recognizing the susceptibility of rock facies to CO2-related alteration at target CO2 geological storage formations is critical to ensuring the long-term mechanical stability and security of CO2 trapping.

Book Effects of Carbon Dioxide Injection on the Displacement of Methane and Carbonate Dissolution in Sandstone Cores

Download or read book Effects of Carbon Dioxide Injection on the Displacement of Methane and Carbonate Dissolution in Sandstone Cores written by Ekene Obioma Maduakor and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Previous coreflood experiments show that CO2 sequestration in carbonate rocks is a win-win technology. Injecting CO2 into a depleted gas reservoir for storage also produces hitherto unrecoverable gas. This in turn helps to defray the cost of CO2 sequestration. This thesis reports the results from experiments conducted on a Berea sandstone core. The experiments include displacement experiments and unconfined compressive strength tests. The displacement experiments were conducted at cell pressures of 1500 psig and temperature of 60°C using a 1 foot long and 1 inch diameter Berea sandstone core. Pure CO2 and treated flue gas (99.433 % mole CO2) were injected into the Berea sandstone core initially saturated with methane at a pressure of 1500 psig and 800 psig respectively. Results from these experiments show that the dispersion coefficient for both pure CO2 and treated flue gas are relatively small ranging from 0.18-0.225 cm2/min and 0.28-0.30 cm2/min respectively. The recovery factor of methane at break-through is relatively high ranging from 71%-80% of original gas in place for pure CO2 and 90% to92% OGIP for treated flue gas, the difference resulting from different cell pressures used. Therefore it would appear that, in practice injection of treated flue gas is a cheaper option compared to pure CO2 injection. For the unconfined compressive strength tests, corefloods were first conducted at high flowrates ranging from 5 ml/min to 20 ml/ min, pressures of 1700-1900 Psig and a temperature of 65°C. These conditions simulate injecting CO2 originating from anelectric power generation plant into a depleted gas reservoir and model the near wellbore situation. Results from these experiments show a 1% increase in porosity and changes in injectivity due to permeability impairment. The cores are then subjected to an unconfined compressive strength test. Results from these tests do not show any form of weakening of the rock due to CO2 injection.

Book Petroleum Related Rock Mechanics

Download or read book Petroleum Related Rock Mechanics written by Erling Fjær and published by Elsevier. This book was released on 2008-01-04 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. Learn the basic principles behind rock mechanics from leading academic and industry experts Quick reference and guide for engineers and geologists working in the field Keep informed and up to date on all the latest methods and fundamental concepts

Book Calcium Carbonate Formation in Energy related Subsurface Environments and Engineered Systems

Download or read book Calcium Carbonate Formation in Energy related Subsurface Environments and Engineered Systems written by Qingyun Li and published by . This book was released on 2016 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geologic CO2 sequestration (GCS) in subsurface saline aquifers is a promising strategy to mitigate climate change caused by increasing anthropogenic CO2 emissions from energy production. At GCS sites, interactions between fluids and geomedia are important because they can affect CO2 trapping efficiency and the safety of CO2 storage. These interactions include the dissolution and precipitation of minerals. One of the most important minerals is calcium carbonate, because it can permanently trap CO2.In this work, Portland cement was used as a model geomedium to investigate the chemical reactions, mechanical alterations, transport of reactive fluids, and the interplay of all these aspects. Also, because Portland cement is used in building and decommissioning CO2 injection wells, its alteration is important for wellbore integrity. Wellbore cement can deteriorate as a result of extensive reactions with injected CO2. Typically, a carbonated layer forms, which can partially reduce CO2 attack by clogging pores in the cement. We conducted high temperature/pressure experiments using Portland cement paste samples, and after 10 days of reaction, quantified the chemical changes using scanning electron microscope backscattering electron imaging and X-ray diffraction. The mechanical changes were quantified as well using a three-point bending setup and nanoindentation. The experimental results showed that after CO2 attack, the cement samples decreased in strength by ~80%, and this decrease was closely related to the formation of a wide and weak portlandite-depleted zone in the cement matrix immediately inside of the carbonated layer. The effects of 0.05 M of sulfate ions were also examined. Interestingly, the additional sulfate ions were found to mitigate CO2 attack by forming a more protective and less soluble carbonated layer, and thus a thinner portlandite-depleted zone.To further investigate the detailed mechanisms by which the wide and weak portlandite-depleted zone formed and the carbonated layer's surface dissolved, we set up a one-dimensional continuum reactive transport model using the CrunchTope software. Two mechanisms were found to be critical in reproducing our main observations: First, the precipitated CaCO3 could not fill the entire pore spaces in the carbonated layer. The inefficiency of CaCO3 precipitation in filling all the pores might be due to fractures and defects in the carbonated layer, or due to the extent of pore-size-dependent precipitation. Second, nucleation kinetics had to be incorporated into the model to predict the mineral precipitation observed in the reaction solution and to capture the dissolution of the carbonated layer's surface.To acquire parameters for the incorporation of nucleation kinetics, CaCO3 nucleation experiments were conducted primarily using atomic force microscopy and synchrotron-based in situ grazing incidence small angle X-ray scattering. Newly obtained interfacial energies were compared for mica and quartz systems, and a slightly higher interfacial energy was found in the quartz system. The effects of salinity were investigated in the range of 0.15--0.85 M ionic strengths, and we found a decrease of interfacial energies at high salinity. The kinetic factors, including the apparent activation energy and the pre-exponential factor in the nucleation rate equation, were experimentally obtained for the first time by varying temperatures in the range of 12--31 °C. These parameters provided the key information for modeling nucleation in geomedia and synthesizing well controlled materials in materials science.The CaCO3 nucleation studies advanced our current understanding of nucleation under various conditions, and the acquired parameters were indispensable for our numerical simulations of the cement deterioration. The reactive transport modeling work revealed the important mechanisms in the cement--CO2 reactions, and provided many insights for understanding the chemical and mechanical alterations of geomedia. The investigation of cement deterioration quantitatively coupled the chemical and mechanical changes of the cement samples, and proved that the molecular scale of water--rock reactions can have a substantial impact on the change of the bulk geomedia. Such information can be also be applied to shale/sandstone--CO2 interactions. Overall, this dissertation presents a platform to understand fluid--geomedia interactions, combining experimental and modeling approaches, and connecting basic sciences and real applications. The advanced understanding of fluid--geomedia interactions will help improve GCS operation and thus address the climate change challenge.

Book Petrophysical and Seismic Studies of Rock CO2 Reactions and Fluid Substitution in Sandstones from the Pohokura Field  New Zealand

Download or read book Petrophysical and Seismic Studies of Rock CO2 Reactions and Fluid Substitution in Sandstones from the Pohokura Field New Zealand written by Cheng Yii Sim and published by . This book was released on 2015 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) geosequestration is a proposed method to mitigate the emissions of this green house gas into the atmosphere. Time-lapse seismic reflection imaging is used to monitor subsurface variation when CO2 is injected into a geological reservoir. The changes observed in time-lapse seismic signature are often associated with fluid-saturation and/or fluid pressure changes which are used to monitor the movement of the CO2 plume. However, geophysicists have not taken into account how rock-CO2 chemical reactions can affect these time-lapse signatures when geochemists have already shown that carbonate minerals dissolve when they are in contact with carbonic acid. The Pohokura Field, is a major gas-producing field in New Zealand. It has been suggested as a potential CO2-sequestration site after depletion. Its reservoir sandstones have a range of carbonate cementation volumes which makes it a great candidate to study time-lapse response due to fluids and rock dissolution if CO2-sequestration were to be carried out at the Pohokura Field. This thesis investigates the interaction between carbonate-cemented sandstones and a CO2-water mixture, in terms of the elastic and physical properties of the rocks. The effects of fluid substitution alone (brine to supercritical CO2) and those due to the combination of fluid substitution and mineral dissolution on time-lapse seismic signatures are studied by combining laboratory data, geophysical well-log data and 1-D seismic forward modelling. The results of reservoir sandstone samples reacted with a pressurised CO2-water mixture in the laboratory suggest that the governing factor of the degree of mineral dissolution is the initial rock texture as opposed to the abundance of carbonate cement present in the sandstone. Coarse-grained sandstones show greater changes in elastic wave velocities due to dissolution than ne-grained sandstones. Subsequently, the laboratory information is applied onto well-log data to model changes in elastic properties of sandstones in a well-log scale. Besides that, the suite of well-logs and core petrographic analyses, from four Pohokura appraisal wells, are used to find an elastic model that best describes the observed elastic waves velocities in the cemented reservoir sandstones. The Constant-cement rock physics model is found to predict the elastic behavior of the cemented sandstones. The model assumes that the grain-contact cement volume is more important than the non-contact cement volume as it controls the velocity of seismic waves propagating in the sandstones. The changes in elastic properties, such as elastic wave velocity changes, due to mineral dissolution are greater than those due to fluid substitution alone (more than twice for some of the Pohokura reservoir sandstones). When propagating the laboratory results to the well-log data, it is observed that the mineral dissolution effect is greater in the wells located at the North of the field as compared to the ones in the South, since the geology of Pohokura suggests that the sandstones are of coarser grains towards the North. Computed 1-D synthetic seismograms show that the reflection amplitude change due to fluid substitution and mineral dissolution in the Pohokura reservoir can be significant (maximum change of 126%). It is therefore important to consider that time-lapse seismic signatures at the Pohokura Field, and other carbonate-cemented reservoirs, can be misinterpreted if the model used neglects the chemical reaction between a CO2-water mixture and the carbonate cements.

Book Quantifying Chemomechanical Reservoir Sensitivity to CO2 Injection Using Paragenesis Flow through Experiments  and Strength Testing at in Situ Conditions  Farnsworth Unit  Texas

Download or read book Quantifying Chemomechanical Reservoir Sensitivity to CO2 Injection Using Paragenesis Flow through Experiments and Strength Testing at in Situ Conditions Farnsworth Unit Texas written by Jason Simmons and published by . This book was released on 2021 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geological Storage of Carbon Dioxide  CO2

Download or read book Geological Storage of Carbon Dioxide CO2 written by J Gluyas and published by Elsevier. This book was released on 2013-11-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-15
  • ISBN : 1119118670
  • Pages : 372 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Science of Carbon Storage in Deep Saline Formations

Download or read book Science of Carbon Storage in Deep Saline Formations written by Pania Newell and published by Elsevier. This book was released on 2018-09-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.

Book Reactive Transport Modeling

Download or read book Reactive Transport Modeling written by Yitian Xiao and published by John Wiley & Sons. This book was released on 2018-03-14 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.

Book Characterization  Modeling  Monitoring  and Remediation of Fractured Rock

Download or read book Characterization Modeling Monitoring and Remediation of Fractured Rock written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2021-01-29 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Book Reservoir Quality of Clastic and Carbonate Rocks

Download or read book Reservoir Quality of Clastic and Carbonate Rocks written by P.J. Armitage and published by Geological Society of London. This book was released on 2018-06-18 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir quality is studied using a wide range of similar techniques in both sandstones and carbonates. Sandstone and carbonate reservoir quality both benefit from the study of modern analogues and experiments, but modelling approaches are currently quite different for these two types of reservoirs. There are many common controls on sandstone and carbonate reservoir quality, but also distinct differences due primarily to mineralogy. Numerous controversies remain including the question of oil inhibition, the key control on pressure solution and geochemical flux of material to or from reservoirs. This collection of papers contains case-study-based examples of sandstone and carbonate reservoir quality prediction as well as modern analogue, outcrop analogue, modelling and advanced analytical approaches.