EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization of V shaped Defects in 4H SiC Homoepitaxial Layers

Download or read book Characterization of V shaped Defects in 4H SiC Homoepitaxial Layers written by and published by . This book was released on 2014 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted region with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.

Book Defects and Impurities in 4H  and 6H SiC Homoepitaxial Layers  Identification  Origin  Effect on Properties of Ohmic Contacts and Insulating Layers and Reduction

Download or read book Defects and Impurities in 4H and 6H SiC Homoepitaxial Layers Identification Origin Effect on Properties of Ohmic Contacts and Insulating Layers and Reduction written by R. Davis and published by . This book was released on 1997 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: (L.8+-0.4)x10 to the 7th power V/cm were determined for chynoweth's equation for 6H-SiC and 4H-SiC, respectively, at room temperature. The coefficient ap was found to decrease with increasing temperature for both polytypes while the coefficient bp remained constant Based upon this data, the breakdown voltage of the 4H and 6H-SiC devices is predicted to increase with temperature which is an important desirable characteristic for power devices. The electrical characteristics of lateral n-channel MOSFETs fabricated on 4H-SiC are reported for the first time. Inversion layer electron mobilities of 165 sq cm/Vs in 4H-SiC MOSFETs were measured at room temperature.

Book Extended Defects in 4H SiC Homoepitaxial Layers

Download or read book Extended Defects in 4H SiC Homoepitaxial Layers written by Xuan Zhang and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Defects and Evaluation of Material Quality of Low Temperature Epitaxial Growth

Download or read book Characterization of Defects and Evaluation of Material Quality of Low Temperature Epitaxial Growth written by Hrishikesh Das and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel process for low-temperature (LT) epitaxial growth of silicon carbide (SiC) by replacing the growth precursor propane with chloro-methane was recently developed at Mississippi State University. However, only limited information was available about the defects and impurity incorporation in the various types of epitaxial layers produced by this new method like blanket epitaxial layers, selectively grown epitaxial mesas, and highly doped epitaxial layers, prior to their comprehensive characterization in this work. Molten potassium hydroxide (KOH) etching, mechanical polishing and a variety of other characterizing techniques were used to delineate and identify the defects both in the epilayer and substrates. Under optimum growth conditions, the concentration of defects in the epitaxial layers was found to be less than that in the substrate, which established the good quality of the LT growth process. Defect concentrations, on selectively grown epitaxial layers, strongly depended on the crystallographic orientation of the mesa sidewall. The addition of HCl to the growth process, aimed at increasing the growth rate, caused a significant concentration of triangular defects (TDs) to be formed in the epitaxial layers. The TDs were traced down to the substrate by a combination of repeated polishing and molten KOH etching steps. The TDs were found not to originate from any substrate defects. Their origin was traced to polycrystalline silicon islands which form on the surface during growth and subsequently get evaporated away, which had made it impossible to detect them and suspect their influence on the TD generation prior to this work. The TDs were found to include single or multiple stacking faults bound by partial dislocations and, in some cases, inclusions of other SiC polytypes. Gradual degradation of the epitaxial morphology was found in heavily aluminum doped p+ layers, with an increase in the level of doping, followed by much steeper degradation when approaching the solubility limit of Al in 4H-SiC. Precipitates were the dominating defect at the highest levels of doping and were observed beyond a doping of 3.5x1020 cm-3. A dislocation generation model for heavily doped epitaxial layers was developed accounting for the stress in the lattice caused by Al doping.

Book Electrical Characterization of Process induced Defects in 4H SiC

Download or read book Electrical Characterization of Process induced Defects in 4H SiC written by Shandirai Malven Tunhuma and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon carbide has become an important material in the implementation of next generation photonics. It harbors the silicon vacancy (VSi) which can be transformed to a carbon antisite-vacancy pair (CSiVC) defect through thermal treatment. This defect has quantum functionality and can be used as a single photon source at room temperature. Using defect engineering, this technology is set to surpass advances made in other similar systems because it is being developed on existing standard industrial practices, fabrication protocols and mechanisms. These include techniques such as irradiation, annealing and ion implantation. The motivation of this work was to establish sound device fabrication protocols to be used in the device implementation. In this thesis DLTS and Laplace DLTS have been used to characterize deep level defects induced by various processes in 4H-SiC. Schottky barrier diodes were used to create the space charge region required to probe the defect characteristics using capacitance DLTS. From the DLTS and Laplace DLTS the activation energies of the defects were accurately deduced and the apparent capture cross section was calculated. The defect concentration was also quanti ed in the form of depth pro les plotted from the metal-semiconductor interface of the Schottky barrier diodes into the bandgap of the semiconductor. SEM, AFM and XRD were used to probe the changes in surface morphology and composition accompanying the processing steps whilst Raman spectroscopy was used to probe the nature of induced defects. Sputter deposition of tungsten on 4H-SiC was successfully used to induce the E0:69 which is the VSi. The identity of VSi was con rmed by thermal treatment and it annealed beyond detection at 600 C as expected. A previously unreported defect, the E0:29 was also observed after sputtering and was attributed to the heavy metal and gas ion residue from the deposition process. In order to transform the VSi into CSiVC, W/4H-SiC diodes were annealed up to 1100 C. This resulted in the formation of defects which were attributed to the interdi usion of silicides and carbides formed at the W/4H-SiC interface, as detected by XRD, migrating into the SiC. This was an unfavourable outcome for photonics applications where purity of the semiconductor is a major concern. As an alternative solution, the VSi was induced in 4H-SiC using 167 MeV, Xe26+ swift heavy ions. Xe is a noble gas therefore it would not react with the semiconductor. The structure and integrity of the lattice structure was conserved after irradiation as deduced from confocal Raman microscopy. The depth and concentration of the defects as observed in confocal Raman was consistent with SRIM simulations. AFM showed that the radiation introduced elongated protrusions on the surface of the semiconductor. The observations show that the silicon vacancy can be induced in 4H-SiC by standard industrial practices such as sputter deposition or ion irradiation.

Book Radiation Effects in Silicon Carbide

Download or read book Radiation Effects in Silicon Carbide written by A.A. Lebedev and published by Materials Research Forum LLC. This book was released on 2017 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews the most interesting research concerning the radiation defects formed in 6H-, 4H-, and 3C-SiC under irradiation with electrons, neutrons, and some kinds of ions. The electrical parameters that make SiC a promising material for applications in modern electronics are discussed in detail. Specific features of the crystal structure of SiC are considered. It is shown that, when wide-bandgap semiconductors are studied, it is necessary to take into account the temperature dependence of the carrier removal rate, which is a standard parameter for determining the radiation hardness of semiconductors. The carrier removal rate values obtained by irradiation of various SiC polytypes with n- and p-type conductivity are analyzed in relation to the type and energy of the irradiating particles. The influence exerted by the energy of charged particles on how radiation defects are formed and conductivity is compensated in semiconductors under irradiation is analyzed. Furthermore, the possibility to produce controlled transformation of silicon carbide polytype is considered. The involvement of radiation defects in radiative and nonradiative recombination processes in SiC is analyzed. Data are also presented regarding the degradation of particular SiC electronic devices under the influence of radiation and a conclusion is made regarding the radiation resistance of SiC. Lastly, the radiation hardness of devices based on silicon and silicon carbide are compared.

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-09-23 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Springer Handbook of Semiconductor Devices

Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Book Comprehensive Semiconductor Science and Technology

Download or read book Comprehensive Semiconductor Science and Technology written by and published by Newnes. This book was released on 2011-01-28 with total page 3572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

Book Gallium Nitride and Silicon Carbide Power Technologies 4

Download or read book Gallium Nitride and Silicon Carbide Power Technologies 4 written by K. Shenai and published by The Electrochemical Society. This book was released on with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wide Bandgap Semiconductors for Power Electronics

Download or read book Wide Bandgap Semiconductors for Power Electronics written by Peter Wellmann and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by and published by Academic Press. This book was released on 1998-07-02 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.

Book Crystal Growth Technology

Download or read book Crystal Growth Technology written by Hans J. Scheel and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors and dielectrics are two essential materials found in cell phones and computers, for example, and both are manufactured by growing crystals. Edited by the organizers of the International Workshop on Crystal Growth Technology, this ready reference is essential reading for materials scientists, chemists, physicists, computer hardware manufacturers, engineers, and those working in the chemical and semiconductor industries. They have assembled an international team of experts who present the current challenges, latest methods and new applications for producing these materials necessary for the electronics industry using bulk crystal growth technology. From the contents: * General aspects of crystal growth technology * Compound semiconductors * Halides and oxides * Crystal growth for sustaining energy * Crystal machining

Book Electrical Characterization of Intrinsic and Induced Deep Level Defects in Hexagonal SiC

Download or read book Electrical Characterization of Intrinsic and Induced Deep Level Defects in Hexagonal SiC written by James D. Scofield and published by . This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep level defects in hexagonal SiC were studied using digital deep level transient spectroscopy (DLTS) methods over the temperature range of 100 to 800 deg K. New centers were found in bulk and epitaxial 6H-SiC with ionization energies between 0.38 to 1.3 eV, and levels from 0.2 to 0.856 eV were identified in 4H-SiC epitaxy. Direct correlation between inequivalent lattice sites was identified for energetic pairs associated with both vanadium and ion implanted Mg impurities. Nonradioative carrier capture mechanisms were studied and deep level trapping was found to proceed via lattice relaxation multi-phonon emission, indicating efficient electronic lattice coupling in the wide bandgap material. Junction transport characteristics of 4H-SiC p+/n bipolar devices were observed to be dominated by deep level defects in the epitaxial layers. Significant tunneling conduction in both forward and reverse bias conditions was directly correlated to deep level centers in these devices.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt: