EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterisation of High temperature Materials  Microstructural characterisation

Download or read book Characterisation of High temperature Materials Microstructural characterisation written by and published by Woodhead Publishing Limited. This book was released on 1988 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microstructural Characterization of Materials

Download or read book Microstructural Characterization of Materials written by David Brandon and published by John Wiley & Sons. This book was released on 2013-03-21 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Book Microstructural Characterisation of Fibre Reinforced Composites

Download or read book Microstructural Characterisation of Fibre Reinforced Composites written by John Summerscales and published by Woodhead Publishing. This book was released on 1998-07-10 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 50 years, great progress has been made in developing artificial fibre-reinforced composite materials, generally using filaments with microscopic diameters. A wide range of reinforcement forms, from random arrays to fully aligned, can be used for commercial applications, with the microstructure being a critical factor in realising the required properties in a material. This is the first up-to-date review of how to apply advanced microstructural characterisation techniques to fibre-reinforced composites. Each chapter is designed to offer both a stand-alone introduction to its topic and detailed referencing for follow-up research. With contributions from experts from around the world, the book will be an essential reference for materials scientists and research workers in industry and academia alike. Comprehensive and up-to-date review of the microstructural features of composites Covers a wide range of microstructure characterisation techniques

Book Microstructural and Mechanical Characterization of Alloys

Download or read book Microstructural and Mechanical Characterization of Alloys written by Marek Sroka and published by MDPI. This book was released on 2021-01-13 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.

Book Characterisation of High Temperature Materials  Surface stability

Download or read book Characterisation of High Temperature Materials Surface stability written by and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterisation of High temperature Materials  Mechanical testing

Download or read book Characterisation of High temperature Materials Mechanical testing written by and published by . This book was released on 1988 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Temperature Materials and Mechanisms

Download or read book High Temperature Materials and Mechanisms written by Yoseph Bar-Cohen and published by CRC Press. This book was released on 2014-03-03 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the application of high temperature materials to actuators and sensors, sensor design challenges, as well as various high temperature materials and mechanisms applications and challenges. Utilizing the knowledge of experts in the field, the book considers the multidisciplinary nature of high temperature materials and mechanisms, and covers technology related to several areas including energy, space, aerospace, electronics, and metallurgy. Supplies extensive references at the end of each chapter to enhance further study Addresses related science and engineering disciplines Includes information on drills, actuators, sensors and more A comprehensive resource of information consolidated in one book, this text greatly benefits students in materials science, aerospace and mechanical engineering, and physics. It is also an ideal resource for professionals in the industry.

Book Characterisation of High temperature Materials  Surface stability

Download or read book Characterisation of High temperature Materials Surface stability written by and published by . This book was released on 1988 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microstructural Characterisation  Modelling and Simulation of Solid Oxide Fuel Cell Cathodes

Download or read book Microstructural Characterisation Modelling and Simulation of Solid Oxide Fuel Cell Cathodes written by Joos, Jochen and published by KIT Scientific Publishing. This book was released on 2017-06-29 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work deals with microstructural characterisation, modelling and simulation of SOFC electrodes with the goal of optimizing the electrode microstructures. Methods for a detailed electrode analysis based on focused ion beam (FIB) tomography are presented. A 3D FEM model able to perform simulations of LSCF cathodes based on 3D tomography data is shown. A model generating realistic, yet synthetic microstructures is presented that enables the optimization of microstructural characteristics.

Book Characterisation of High Temperature Materials  Surface stability

Download or read book Characterisation of High Temperature Materials Surface stability written by and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geopolymers

Download or read book Geopolymers written by J L Provis and published by Elsevier. This book was released on 2009-06-22 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: A geopolymer is a solid aluminosilicate material usually formed by alkali hydroxide or alkali silicate activation of a solid precursor such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of reduced-CO2 construction materials as an alternative to Portland-based cements. Geopolymers: structure, processing, properties and industrial applications reviews the latest research on and applications of these highly important materials.Part one discusses the synthesis and characterisation of geopolymers with chapters on topics such as fly ash chemistry and inorganic polymer cements, geopolymer precursor design, nanostructure/microstructure of metakaolin and fly ash geopolymers, and geopolymer synthesis kinetics. Part two reviews the manufacture and properties of geopolymers including accelerated ageing of geopolymers, chemical durability, engineering properties of geopolymer concrete, producing fire and heat-resistant geopolymers, utilisation of mining wastes and thermal properties of geopolymers. Part three covers applications of geopolymers with coverage of topics such as commercialisation of geopolymers for construction, as well as applications in waste management.With its distinguished editors and international team of contributors, Geopolymers: structure, processing, properties and industrial applications is a standard reference for scientists and engineers in industry and the academic sector, including practitioners in the cement and concrete industry as well as those involved in waste reduction and disposal. Discusses the synthesis and characterisation of geopolymers with chapters covering fly ash chemistry and inorganic polymer cements Assesses the application and commercialisation of geopolymers with particular focus on applications in waste management Reviews the latest research on and applications of these highly important materials

Book X ray Characterization of Materials

Download or read book X ray Characterization of Materials written by Eric Lifshin and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.

Book Microstructural Characterization and Mechanical Behaviors of High Entropy Alloys at Room and Elevated temperatures

Download or read book Microstructural Characterization and Mechanical Behaviors of High Entropy Alloys at Room and Elevated temperatures written by Shuying Chen and published by . This book was released on 2019 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: High entropy alloys (HEAs) are proposed as solid-solution alloys containing five or more principal elements in equimolar or near-equimolar ratios, possessing a single crystal structure rather than several ordered phases. Several studies of HEAs have been performed, with focus on the mechanical behavior and characterization of microstructures. The mechanical behavior and properties of HEAs under various conditions, i.e., strain rates, grain sizes, and temperatures, exhibit great differences, such as strong work hardening, homogeneous macroscopic flow, and excellent compression or tension ductility with obvious serrations at room temperature, and partial or complete dynamic recrystallization at high temperatures. The strong and ductile single-phase body-centered-cubic (BCC) HfNbTaTiZr refractory high-entropy alloy (RHEA) is a potential structural material for high-temperature applications. The present work will focus the mechanical properties and serration behavior in HfNbTaTiZr HEAs, by applying transmission electron microscopy (TEM), atom probe tomography (APT), synchrotron diffraction, and scanning electron microscopy (SEM) to the study of plastic deformation and fatigue behaviors in HEAs under different conditions (covering a wide range of strain rates, temperatures, and tension behaviors), in order to reveal the underlying mechanisms of the plastic deformation for HEAs and to predict the fracture stress. Specifically, an anomaly in strain hardening was observed at elevated temperatures-the strain-hardening exponent decreases expectedly from 77 K to 298 K but reverts to an anomalous ascending trend afterwards. Flow serrations at 673 and 773 K implied the dynamic strain aging (DSA) as an extra strengthening mechanism contributing to the intensified strain hardening at elevated temperatures. The superior fatigue properties during cyclic loading were investigated at room temperature, which present a series of substructures, including dislocation loops, jogs, and dislocation network. The resulting dislocation network was formed by the interaction between dislocations with different Burgers vectors, which can act as the obstacle to dislocation motion to strengthen the fatigue behavior and release the strain energy and stress concentration to improve the resistance to cyclic loading. Moreover, the recrystallization, grain growth and phase transformation of HfNbTaTiZr HEAs were investigated as well in the certain range of temperatures to better understand their grain growth kinetics and phase stability in body centered-cubic (bcc) HEAs, which will be helpful for the materials design and optimization.