Download or read book Soft Computing in Interdisciplinary Sciences written by S. Chakraverty and published by Springer Nature. This book was released on 2021-11-01 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.
Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Download or read book Causality in the Sciences written by Phyllis McKay Illari and published by Oxford University Press. This book was released on 2011-03-17 with total page 953 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why do ideas of how mechanisms relate to causality and probability differ so much across the sciences? Can progress in understanding the tools of causal inference in some sciences lead to progress in others? This book tackles these questions and others concerning the use of causality in the sciences.
Download or read book Actual Causality written by Joseph Y. Halpern and published by MIT Press. This book was released on 2016-08-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.
Download or read book Causality written by Judea Pearl and published by Cambridge University Press. This book was released on 2009-09-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Download or read book Source field Causality and Its Application Classical Radiation Theory written by E. J. Post and published by . This book was released on 1966 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematical procedure is given for singling out the causal solutions from the general set of solutions of self-adjoint differential equations. It consists in splitting the self-adjoint equation into a pair of adjoint equations whose solutions are purely causal and purely anti-causal, respectively. A subsequent merging of the equations then generates in full detail, including singularities, the causal and anti-causal :olutions of the original self -adjoint equation. As an important example, it is shown that the d'Alembertian with point source has a legitimate causal solution involving both retarded and advanced potentials at the source point itself, while at all other points, the retarded potential alone satisfies causality. Within the context of the formalism some recent attempts at modifying classical radiation theory can now be reassessed and more clearly categorized. In particular, the Dirac and Wheeler-Feynman approaches are examined in this light.
Download or read book Causal Inference written by Miquel A. Hernan and published by CRC Press. This book was released on 2019-07-07 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.
Download or read book Causal Models written by Steven Sloman and published by Oxford University Press. This book was released on 2005-07-28 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human beings are active agents who can think. To understand how thought serves action requires understanding how people conceive of the relation between cause and effect, between action and outcome. In cognitive terms, how do people construct and reason with the causal models we use to represent our world? A revolution is occurring in how statisticians, philosophers, and computer scientists answer this question. Those fields have ushered in new insights about causal models by thinking about how to represent causal structure mathematically, in a framework that uses graphs and probability theory to develop what are called causal Bayesian networks. The framework starts with the idea that the purpose of causal structure is to understand and predict the effects of intervention. How does intervening on one thing affect other things? This is not a question merely about probability (or logic), but about action. The framework offers a new understanding of mind: Thought is about the effects of intervention and cognition is thus intimately tied to actions that take place either in the actual physical world or in imagination, in counterfactual worlds. The book offers a conceptual introduction to the key mathematical ideas, presenting them in a non-technical way, focusing on the intuitions rather than the theorems. It tries to show why the ideas are important to understanding how people explain things and why thinking not only about the world as it is but the world as it could be is so central to human action. The book reviews the role of causality, causal models, and intervention in the basic human cognitive functions: decision making, reasoning, judgment, categorization, inductive inference, language, and learning. In short, the book offers a discussion about how people think, talk, learn, and explain things in causal terms, in terms of action and manipulation.
Download or read book A Logical Theory of Causality written by Alexander Bochman and published by MIT Press. This book was released on 2021-08-17 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference. In this book, Alexander Bochman presents a general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference, basing it on a supposition that causal reasoning is not a competitor of logical reasoning but its complement for situations lacking logically sufficient data or knowledge. Bochman also explores the relationship of this theory with the popular structural equation approach to causality proposed by Judea Pearl and explores several applications ranging from artificial intelligence to legal theory, including abduction, counterfactuals, actual and proximate causality, dynamic causal models, and reasoning about action and change in artificial intelligence. As logical preparation, before introducing causal concepts, Bochman describes an alternative, situation-based semantics for classical logic that provides a better understanding of what can be captured by purely logical means. He then presents another prerequisite, outlining those parts of a general theory of nonmonotonic reasoning that are relevant to his own theory. These two components provide a logical background for the main, two-tier formalism of the causal calculus that serves as the formal basis of his theory. He presents the main causal formalism of the book as a natural generalization of classical logic that allows for causal reasoning. This provides a formal background for subsequent chapters. Finally, Bochman presents a generalization of causal reasoning to dynamic domains.
Download or read book Causality Probability and Time written by Samantha Kleinberg and published by Cambridge University Press. This book was released on 2013 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Download or read book Causality and Its Application written by Jaysankar Lal Shaw and published by . This book was released on 2005 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality and Its Application: Samkhya, Bauddha and Nyaya is not only a commentry on the views of classical Indian philosophers, but also contains explanations of concepts which are indispensable for understanding metaphysics, epistemology and ethics, among many other things. This book deals with a range of questions such as whether the material cause contains the effect in its subtle form, whether causality can be defined in terms of efficacy, whether causal conditions are related to each other and whether they can be classified into types. It also explains the relation between the concepts of event, action, moment and causality .
Download or read book Theories of Causality written by John Losee and published by Transaction Publishers. This book was released on 2011 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: What types of entities qualify as "causes" and "effects"? What is the relationship between cause and effect? How are causal claims to be assessed? The first question deals with the structure of the world; the second is about theories that interpret the relationship of causes to effects; while the third has to do with proper procedure in science and everyday life. This volume is a wide-ranging history of answers that have been given to these three questions, and their relationship to scientific understanding. Losee presents a number of theories of causality within a historical survey that emphasies the interrelationship between these theories and developments in science. His analysis displays the strengths and weaknesses of these theories so as to contribute to our present understanding of causal relatedness. Among the positions discussed are those of Aristotle, Hume, Kant, Mill, Salmon, Lewis, and Woodward. Losee's analysis displays the strengths and weaknesses of theories that identify causal relatedness with regularity of sequence, probability increase, energy transfer, exchange of a conserved quantity, counterfactual dependence, and inferability. These theories are judged, in part, by their ability to resolve difficulties posed by instances of overdetermination, causation by omission, preventive causation, and causation by disconnection. Since applications of the theories to these instances disagree, a strategy of employing multiple concepts of causation is examined.  Theories of Causality also describes the particular difficulties for causal analysis posed by quantum mechanics. One such difficulty is the prohibition against combining a causal analysis of a quantum process with a spatio-temporal description of that process.
Download or read book The Direction of Time written by Hans Reichenbach and published by Courier Corporation. This book was released on 2012-10-10 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distinguished physicist examines emotive significance of time, time order of mechanics, time direction of thermodynamics and microstatistics, time direction of macrostatistics, time of quantum physics, more. 1971 edition.
Download or read book The Why of Things written by Peter V. Rabins and published by Columbia University Press. This book was released on 2013-08-20 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why was there a meltdown at the Fukushima power plant? Why do some people get cancer and not others? Why is global warming happening? Why does one person get depressed in the face of life's vicissitudes while another finds resilience? Questions like these—questions of causality—form the basis of modern scientific inquiry, posing profound intellectual and methodological challenges for researchers in the physical, natural, biomedical, and social sciences. In this groundbreaking book, noted psychiatrist and author Peter Rabins offers a conceptual framework for analyzing daunting questions of causality. Navigating a lively intellectual voyage between the shoals of strict reductionism and relativism, Rabins maps a three-facet model of causality and applies it to a variety of questions in science, medicine, economics, and more. Throughout this book, Rabins situates his argument within relevant scientific contexts, such as quantum mechanics, cybernetics, chaos theory, and epigenetics. A renowned communicator of complex concepts and scientific ideas, Rabins helps readers stretch their minds beyond the realm of popular literary tipping points, blinks, and freakonomic explanations of the world.
Download or read book Causality written by Carlo Berzuini and published by John Wiley & Sons. This book was released on 2012-06-04 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
Download or read book Causal Inference written by Scott Cunningham and published by Yale University Press. This book was released on 2021-01-26 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
Download or read book Causality written by Phyllis Illari and published by OUP Oxford. This book was released on 2014-10-02 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Head hits cause brain damage - but not always. Should we ban sport to protect athletes? Exposure to electromagnetic fields is strongly associated with cancer development - does that mean exposure causes cancer? Should we encourage old fashioned communication instead of mobile phones to reduce cancer rates? According to popular wisdom, the Mediterranean diet keeps you healthy. Is this belief scientifically sound? Should public health bodies encourage consumption of fresh fruit and vegetables? Severe financial constraints on research and public policy, media pressure, and public anxiety make such questions of immense current concern not just to philosophers but to scientists, governments, public bodies, and the general public. In the last decade there has been an explosion of theorizing about causality in philosophy, and also in the sciences. This literature is both fascinating and important, but it is involved and highly technical. This makes it inaccessible to many who would like to use it, philosophers and scientists alike. This book is an introduction to philosophy of causality - one that is highly accessible: to scientists unacquainted with philosophy, to philosophers unacquainted with science, and to anyone else lost in the labyrinth of philosophical theories of causality. It presents key philosophical accounts, concepts and methods, using examples from the sciences to show how to apply philosophical debates to scientific problems.