EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Optimization and Uncertainty Analysis of Complex Environmental Models  with Applications in Watershed Management

Download or read book Bayesian Optimization and Uncertainty Analysis of Complex Environmental Models with Applications in Watershed Management written by Able Mashamba and published by . This book was released on 2010 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents results of research in the development, testing and application of an automated calibration and uncertainty analysis framework for distributed environmental models based on Bayesian Markov chain Monte Carlo (MCMC) sampling and response surface methodology (RSM) surrogate models that use a novel random local fitting algorithm. Typical automated search methods for optimization and uncertainty assessment such as evolutionary and Nelder-Mead Simplex algorithms are inefficient and/or infeasible when applied to distributed environmental models, as exemplified by the watershed management scenario analysis case study presented as part of this dissertation. This is because the larger numbers of non-linearly interacting parameters and the more complex structures of distributed environmental models make automated calibration and uncertainty analysis more computationally demanding compared to traditional basin-averaged models. To improve efficiency and feasibility of automated calibration and uncertainty assessment of distributed models, recent research has been focusing on using the response surface methodology (RSM) to approximate objective functions such as sum of squared residuals and Bayesian inference likelihoods. This dissertation presents (i) results on a novel study of factors that affect the performance of RSM approximation during Bayesian calibration and uncertainty analysis, (ii) a new 'random local fitting' (RLF) algorithm that improves RSM approximation for large sampling domains and (iii) application of a developed automated uncertainty analysis framework that uses MCMC sampling and a spline-based radial basis approximation function enhanced by the RLF algorithm to a fully-distributed hydrologic model case study. Using the MCMC sampling and response surface approximation framework for automated parameter and predictive uncertainty assessment of a distributed environmental model is novel. While extended testing of the developed MCMC uncertainty analysis paradigm is necessary, the results presented show that the new framework is robust and efficient for the case studied and similar distributed environmental models. As distributed environmental models continue to find use in climate change studies, flood forecasting, water resource management and land use studies, results of this study will have increasing importance to automated model assessment. Potential future research from this dissertation is the investigation of how model parameter sensitivities and inter-dependencies affect the performance of response surface approximation.

Book Stochastic Modeling and Uncertainty Assessment for Watershed Water Quality Management

Download or read book Stochastic Modeling and Uncertainty Assessment for Watershed Water Quality Management written by Yi Zheng and published by . This book was released on 2007 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex watershed water quality models have been increasingly used to support Total Maximum Daily Load (TMDL) development. However, systematic approaches for addressing the significant simulation uncertainty are lacking. For TMDLs supported by complex watershed models, defining the margin of safety (MOS) component through a rigorous uncertainty analysis remains a significant challenge. This study aimed to develop (1) a systematic approach of uncertainty analysis for complex watershed water quality models in the watershed management context; and (2) a framework for defining the MOS with an explicit consideration of uncertainty and degree of protection. A global sensitivity analysis technique was first applied to select critical model parameters. A framework for sources of uncertainty and their interactions was built. Based on this framework, Generalized Likelihood Uncertainty Estimation (GLUE) was initially evaluated as a potential approach for conducting stochastic simulation and uncertainty analysis for complex watershed models. The limitations of GLUE became evident, which led to the development of a new Bayesian approach, Management Objectives Constrained Analysis of Uncertainty (MOCAU). The concept Compliance of Confidence (CC) was then introduced to bridge the gap between modeling uncertainty and MOS. An optimization model was also developed for cost-minimized TMDLs. This study used WARMF as an example of a complex watershed model and constructed a synthetic watershed for developing and testing methodologies. The methodologies were also implemented to study the diazinon TMDL in the Newport Bay watershed (southern California). This research contributes to the theory of stochastic watershed water quality modeling, as well as to the practices of managing watershed water quality.

Book The Science and Management of Uncertainty

Download or read book The Science and Management of Uncertainty written by Bruce G. Marcot and published by CRC Press. This book was released on 2020-11-26 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty can take many forms, can be represented in many ways, and can have important implications in decision-making and policy development. This book provides a rigorous scientific framework for dealing with uncertainty in real-world situations, and provides a comprehensive study of concepts, measurements, and applications of uncertainty in ecological modeling and natural resource management. The focus of this book is on the kinds and implications of uncertainty in environmental modeling and management, with practical guidelines and examples for successful modeling and risk analysis in the face of uncertain conditions and incomplete information. Provided is a clear classification of uncertainty; methods for measuring, modeling, and communicating uncertainty; practical guidelines for capturing and representing expert knowledge and judgment; explanations of the role of uncertainty in decision-making; a guideline to avoiding logical fallacies when dealing with uncertainty; and several example cases of real-world ecological modeling and risk analysis to illustrate the concepts and approaches. Case topics provide examples of structured decision-making, statistical modeling, and related topics. A summary provides practical next steps that the reader can take in analyzing and interpreting uncertainty in real-world situations. Also provided is a glossary and a suite of references.

Book Environmental Modelling

Download or read book Environmental Modelling written by Keith Beven and published by CRC Press. This book was released on 2018-09-03 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty in the predictions of science when applied to the environment is an issue of great current relevance in relation to the impacts of climate change, protecting against natural and man-made disasters, pollutant transport and sustainable resource management. However, it is often ignored both by scientists and decision makers, or interpreted as a conflict or disagreement between scientists. This is not necessarily the case, the scientists might well agree, but their predictions would still be uncertain and knowledge of that uncertainty might be important in decision making. Environmental Modelling: An Uncertain Future? introduces students, scientists and decision makers to: the different concepts and techniques of uncertainty estimation in environmental prediction the philosophical background to different concepts of uncertainty the constraint of uncertainties by the collection of observations and data assimilation in real-time forecasting techniques for decision making under uncertainty. This book will be relevant to environmental modellers, practitioners and decision makers in hydrology, hydraulics, ecology, meteorology and oceanography, geomorphology, geochemistry, soil science, pollutant transport and climate change. A companion website for the book can be found at www.uncertain-future.org.uk

Book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling

Download or read book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling written by Philippe Renard and published by Frontiers Media SA. This book was released on 2020-04-22 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.

Book Automated Machine Learning

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Book Confronting Climate Uncertainty in Water Resources Planning and Project Design

Download or read book Confronting Climate Uncertainty in Water Resources Planning and Project Design written by Patrick A. Ray and published by World Bank Publications. This book was released on 2015-08-20 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Confronting Climate Uncertainty in Water Resources Planning and Project Design describes an approach to facing two fundamental and unavoidable issues brought about by climate change uncertainty in water resources planning and project design. The first is a risk assessment problem. The second relates to risk management. This book provides background on the risks relevant in water systems planning, the different approaches to scenario definition in water system planning, and an introduction to the decision-scaling methodology upon which the decision tree is based. The decision tree is described as a scientifically defensible, repeatable, direct and clear method for demonstrating the robustness of a project to climate change. While applicable to all water resources projects, it allocates effort to projects in a way that is consistent with their potential sensitivity to climate risk. The process was designed to be hierarchical, with different stages or phases of analysis triggered based on the findings of the previous phase. An application example is provided followed by a descriptions of some of the tools available for decision making under uncertainty and methods available for climate risk management. The tool was designed for the World Bank but can be applicable in other scenarios where similar challenges arise.

Book Uncertainty Reduction and Characterization of Complex Environmental Fate and Transport Models

Download or read book Uncertainty Reduction and Characterization of Complex Environmental Fate and Transport Models written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, a computationally efficient Bayesian framework for the reduction and characterization of parametric uncertainty in computationally demanding environmental 3-D numerical models has been developed. The framework is based on the combined application of the Stochastic Response Surface Method (SRSM, which generates accurate and computationally efficient statistically equivalent reduced models) and the Markov Chain Monte Carlo method. The application selected to demonstrate this framework involves steady state groundwater flow at the U.S. Department of Energy Savannah River Site General Separations Area, modeled using the Subsurface Flow And Contaminant Transport (FACT) code. Input parameter uncertainty, based initially on expert opinion, was found to decrease in all variables of the posterior distribution. The joint posterior distribution obtained was then further used for the final uncertainty analysis of the stream baseflows and well location hydraulic head values.

Book Handbook of Hydrometeorological Ensemble Forecasting

Download or read book Handbook of Hydrometeorological Ensemble Forecasting written by Qingyun Duan and published by Springer. This book was released on 2016-05-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.

Book Water Resource Systems Planning and Management

Download or read book Water Resource Systems Planning and Management written by Daniel P. Loucks and published by Springer. This book was released on 2017-03-02 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.

Book Hydrogeophysics

    Book Details:
  • Author : Yorum Rubin
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-06
  • ISBN : 1402031025
  • Pages : 518 pages

Download or read book Hydrogeophysics written by Yorum Rubin and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ground-breaking work is the first to cover the fundamentals of hydrogeophysics from both the hydrogeological and geophysical perspectives. Authored by leading experts and expert groups, the book starts out by explaining the fundamentals of hydrological characterization, with focus on hydrological data acquisition and measurement analysis as well as geostatistical approaches. The fundamentals of geophysical characterization are then at length, including the geophysical techniques that are often used for hydrogeological characterization. Unlike other books, the geophysical methods and petrophysical discussions presented here emphasize the theory, assumptions, approaches, and interpretations that are particularly important for hydrogeological applications. A series of hydrogeophysical case studies illustrate hydrogeophysical approaches for mapping hydrological units, estimation of hydrogeological parameters, and monitoring of hydrogeological processes. Finally, the book concludes with hydrogeophysical frontiers, i.e. on emerging technologies and stochastic hydrogeophysical inversion approaches.

Book Global Sensitivity Analysis

Download or read book Global Sensitivity Analysis written by Andrea Saltelli and published by John Wiley & Sons. This book was released on 2008-02-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.

Book Calibration and Uncertainty Analysis of Environmental Models

Download or read book Calibration and Uncertainty Analysis of Environmental Models written by and published by . This book was released on 1990 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmental Modelling

Download or read book Environmental Modelling written by John Wainwright and published by John Wiley & Sons. This book was released on 2013-04-01 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation models are an established method used to investigate processes and solve practical problems in a wide variety of disciplines. Central to the concept of this second edition is the idea that environmental systems are complex, open systems. The authors present the diversity of approaches to dealing with environmental complexity and then encourage readers to make comparisons between these approaches and between different disciplines. Environmental Modelling: Finding Simplicity in Complexity 2nd edition is divided into four main sections: An overview of methods and approaches to modelling. State of the art for modelling environmental processes Tools used and models for management Current and future developments. The second edition evolves from the first by providing additional emphasis and material for those students wishing to specialize in environmental modelling. This edition: Focuses on simplifying complex environmental systems. Reviews current software, tools and techniques for modelling. Gives practical examples from a wide variety of disciplines, e.g. climatology, ecology, hydrology, geomorphology and engineering. Has an associated website containing colour images, links to WWW resources and chapter support pages, including data sets relating to case studies, exercises and model animations. This book is suitable for final year undergraduates and postgraduates in environmental modelling, environmental science, civil engineering and biology who will already be familiar with the subject and are moving on to specialize in the field. It is also designed to appeal to professionals interested in the environmental sciences, including environmental consultants, government employees, civil engineers, geographers, ecologists, meteorologists, and geochemists.

Book River Water Quality Model

Download or read book River Water Quality Model written by P. Reichert and published by IWA Publishing. This book was released on 2001-08-31 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Scientific and Technical Report (STR) presents the findings of the IWA Task Group on River Water Quality Modelling (RWQM). The task group was formed to create a scientific and technical base from which to formulate standardized, consistent river water quality models and guidelines for their implementation. This STR presents the first outcome in this effort: River Water Quality Model No. 1 (RWQM1). As background to the development of River Water Quality Model No.1, the Task Group completed a critical evaluation of the current state of the practice in water quality modelling. A major limitation in model formulation is the continued reliance on BOD as the primary state variable, despite the fact BOD does not include all biodegradable matter. A related difficulty is the poor representation of benthic flux terms. As a result of these limitations, it is impossible to close mass balances completely in most existing models. These various limitations in current river water quality models impair their predictive ability in situations of marked changes in a river's pollutant load, streamflow, morphometry, or other basic characteristics. RWQM 1 is intended to serve as a framework for river water quality models that overcome these deficiencies in traditional water quality models and most particularly the failure to close mass balances between the water column and sediment. To these ends, the model incorporates fundamental water quality components and processes to characterise carbon, oxygen, nitrogen, and phosphorus (C, O, N, and P) cycling instead of biochemical oxygen demand as used in traditional models. The model is presented in terms of process and components represented via a 'Petersen stoichiometry matrix', the same approach used for the IWA Activated Sludge Models. The full RWQM1 includes 24 components and 30 processes. The report provides detailed examples on reducing the numbers of components and processes to fit specific water quality problems. Thus, the model provides a framework for both complicated and simplified models. Detailed explanations of the model components, process equations, stoichiometric parameters, and kinetic parameters are provided, as are example parameter values and two case studies. The STR is intended to launch a participatory process of model development, application, and refinement. RWQM1 provides a framework for this process, but the goal of the Task Group is to involve water quality professionals worldwide in the continued work developing a new water quality modelling approach. This text will be an invaluable reference for researchers and graduate students specializing in water resources, hydrology, water quality, or environmental modelling in departments of environmental engineering, natural resources, civil engineering, chemical engineering, environmental sciences, and ecology. Water resources engineers, water quality engineers and technical specialists in environmental consultancy, government agencies or regulated industries will also value this critical assessment of the state of practice in water quality modelling. Key Features presents a unique new technical approach to river water quality modelling provides a detailed technical presentation of the RWQM1 water quality process model gives an informative critical evaluation of the state of the practice in water quality modelling, and problems with those practices provides a step by step procedure to develop a water quality model Scientific & Technical Report No. 12

Book Bayesian Uncertainty Analysis and Decision Support for Complex Models of Physical Systems with Application to Production Optimisation of Subsurface Energy Resources

Download or read book Bayesian Uncertainty Analysis and Decision Support for Complex Models of Physical Systems with Application to Production Optimisation of Subsurface Energy Resources written by Jonathan Daniel Owen and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: