EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aqueous Reaction Kinetics and Secondary Organic Aerosol Formation from Atmospheric Phenol Oxidation

Download or read book Aqueous Reaction Kinetics and Secondary Organic Aerosol Formation from Atmospheric Phenol Oxidation written by Jeremy Daniel Smith and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic aerosols (OA) are a dominant fraction of particulate mass in the atmosphere, and much is secondary in nature. Secondary organic aerosol (SOA) is formed in the atmosphere from volatile organic compound precursors. Traditional SOA formation pathways involve primarily gas-phase processes: Oxidation reactions of organic gases result in low-volatility products that condense to the particulate phase, increasing aerosol mass. However, in recent years heterogeneous processes, including aqueous reactions, have gained more attention as gas-phase processes often fail to accurately predict observed mass loadings of aerosol in the atmosphere. Aqueous SOA formation is the result of a volatile organic species partitioning to the aqueous phase (clouds, fogs, aqueous aerosols), where they are chemically converted into a non-volatile species that remains in the particulate phase upon water evaporation. In this work we explore the aqueous chemical reaction kinetics and the SOA formation potential of phenols, which are released in large quantities from biomass combustion. Phenols are a broad class of organic compounds with intermediate volatilities (102 - 106 [mu]g m−3 at 20°C) and moderate to high Henry's Law Constants (103 - 109M atm−1), indicating significant partitioning to atmospheric aqueous phases. We begin in chapters 2 and 3 by investigating the aqueous oxidation of the compounds phenol (compound with formula C6H5OH), guaiacol (2-methoxyphenol), syringol (2,6-dimethoxyphenol), and three dihydroxybenzenes (catechol, resorcinol, hydroquinone). For each phenol we examined reactions with two oxidants: hydroxyl radical (*OH) and the triplet excited state of 3,4-dimethoxybenzaldehyde, which is also emitted from biomass combustion. Triplet excited states (3C*) have been widely studied in surface waters (oceans and lakes) but are a novel oxidation pathway in atmospheric aqueous phases. The precursors for triplet excited states are essentially brown carbon: organic molecules high amoutns of conjugation (or nitrogen hetero atoms) that can absorb solar radiation, resulting in an excited molecule with a high oxidative potential. We find that the 3C*-mediated aqueous oxidations of phenols are rapid and can dominate over *OH at low pH (

Book Formation and Chemical Evolution of Secondary Organic Aerosol from Aqueous phase Reactions of Atmospheric Phenols

Download or read book Formation and Chemical Evolution of Secondary Organic Aerosol from Aqueous phase Reactions of Atmospheric Phenols written by Lu Yu and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Secondary organic aerosol (SOA) is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical and physical processes. Understanding the formation and transformation processes of SOA via aqueous-phase reactions is important for properly presenting its atmospheric evolution pathways in models and for elucidating its climate and health effects. Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the formation and evolution of phenol (C6H6O), guaiacol (C7H8O2; 2-methoxyphenol) and syringol (C8H10O3; 2,6-dimethoxyphenol) and with two major aqueous phase oxidants -- the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (·OH) - and interpret the reaction mechanisms. In addition, given that dissolved organic matter (DOM) is an important component of fog and cloud water and that it can undergo aqueous reactions to form more oxidized, less volatile species, we further investigate the photochemical processing of DOM in fog water to gain insights into the aqueous-phase processing of organic aerosol (OA) in the atmosphere. In Chapter 2, we thoroughly characterize the bulk chemical and molecular compositions of phenolic aqSOA formed at half-life (t[subscript 1/2]), and interpret the formation mechanisms. We find that phenolic aqSOA formed at t[subscript 1/2] is highly oxygenated with atomic oxygen-to-carbon ratio (O/C) in the range of 0.85-1.23. Dimers, higher oligomers (up to hexamers), functionalized monomers and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acids are detected. Compared with ·OH-mediated reactions, reactions mediated by 3C* are faster and produce more oligomers and hydroxylated species at t[subscript1/2]. We also find that aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are an important source of secondary brown carbon in the atmosphere, especially in regions impacted by biomass burning. In Chapter 3, we investigate the chemical evolution of phenolic aqSOA via aqueous-phase reactions on the molecular level and interpret the aging mechanisms. Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation. Functionalization and fragmentation become dominant at later stages, forming a variety of functionalized aromatic and ring-opening products with higher carbon oxidation states. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules. In addition, phenolic aqSOA has a wide range of saturation vapor pressures (C*), varying from 10−20 [mu]g m−3 for functionalized phenolic oligomers to 10 [mu]g m−3 for ring-opening species with number of carbon less than 6. The detection of abundant extremely low volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere. Chapter 3 investigates the molecular transformation with aging based on the characterization of three aqSOA filter samples collected at the defined time intervals of the photoreaction. However, the chemical evolution of aqSOA products with hours of illumination at a higher time resolution is largely unknown. In Chapter 4, we investigate the chemical evolution of aqSOA at a 1-min time resolution based on high-resolution aerosol mass spectrometer (AMS) analysis. This is important for understanding the continuous evolution of phenolic aqSOA with aging as well as for elucidating the formation and transformation of different generations of products. Our results suggest that dimer and higher-order oligomers (trimers, tetramers, etc.) are formed continuously during the first 1-2 hours of photoreaction but show a gradual decrease afterwards. Functionalized derivatives grow at a later time and then gradually decrease. Highly oxidized ring-opening species continuously increase over the course of reactions. Positive matrix factorization (PMF) analysis of the AMS spectra of phenolic aqSOA identifies multiple factors, representing different generations of products. The 1st-generation products include dimers, higher-order oligomers and their oxygenated derivatives. The 2nd-generation products include oxygenated monomeric derivatives. The 3rd-generation products include highly oxidized ring-opening species. In Chapter 5, we investigate the evolution of dissolved organic matter (DOM) in fog water. Our results show that the mass concentration of DOM[subscript OA] (i.e., low-volatility DOM in fog water) is enhanced over the course of illumination, with continuous increase of O/C and atomic nitrogen-to-carbon ratio (N/C). The increase of DOM[subscript OA] is due to the incorporation of oxygen- and nitrogen-containing functional groups into the molecules. The aqueous aging of DOM[subscript OA] can be modeled as a linear combination of the dynamic variations of 3 factors using PMF analysis. Factor 1 is chemically similar to the DOM[subscript OA] before illumination, which is quickly reacted away. Factor 2 is representative of an intermediate component, which is first formed and then transformed, and O/C of Factor 2 is intermediate between that of Factor 1 and Factor 3. Factor 3 represents highly oxidized final products, which is continuously formed during illumination. Fog DOM absorbs significantly in the tropospheric sunlight wavelengths, but this absorption behavior stays almost constant over the course of illumination, despite the significant change in chemical composition.

Book Atmospheric Multiphase Chemistry

Download or read book Atmospheric Multiphase Chemistry written by Hajime Akimoto and published by John Wiley & Sons. This book was released on 2020-06-02 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important guide that highlights the multiphase chemical processes for students and professionals who want to learn more about aerosol chemistry Atmospheric Multiphase Reaction Chemistry provides the information and knowledge of multiphase chemical processes and offers a review of the fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols. The authors—noted experts on the topic—also describe new particle formation, and cloud condensation nuclei activity. In addition, the text includes descriptions of field observations on secondary aerosols and PM2.5. Atmospheric aerosols play a critical role in air quality and climate change. There is growing evidence that the multiphase reactions involving heterogeneous reactions on the air-particle interface and the reactions in the bulk liquid phase of wet aerosol and cloud/fog droplets are important processes forming secondary aerosols in addition to gas-phase oxidation reactions to form low-volatile compounds. Comprehensive in scope, the book offers an understanding of the topic by providing a historical overview of secondary aerosols, the fundamentals of multiphase reactions, gas-phase reactions of volatile organic compounds, aqueous phase and air-particle interface reactions of organic compound. This important text: Provides knowledge on multiphase chemical processes for graduate students and research scientists Includes fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols Covers in detail reaction chemistry of secondary organic aerosols Written for students and research scientists in atmospheric chemistry and aerosol science of environmental engineering, Atmospheric Multiphase Reaction Chemistry offers an essential guide to the fundamentals of multiphase chemical processes.

Book Chemistry of Secondary Organic Aerosol

Download or read book Chemistry of Secondary Organic Aerosol written by Lindsay Diana Yee and published by . This book was released on 2013 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.

Book Secondary Organic Aerosol  SOA  Formation from Aqueous OH Radical Oxidation of Dicarbonyl Compounds in the Atmosphere

Download or read book Secondary Organic Aerosol SOA Formation from Aqueous OH Radical Oxidation of Dicarbonyl Compounds in the Atmosphere written by Yi Tan and published by . This book was released on 2010 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Secondary organic aerosols (SOA) affect visibility, health and global climate. Current chemical transport models cannot represent SOA in the free troposphere. Fog/cloud processing, which is the dominant source of atmospheric sulfate, has been recognized as a missing source of SOA globally. Aqueous photooxidation of water-soluble products (e.g., glyoxal and methylglyoxal) of gas-phase photochemistry yields low-volatility compounds including oxalic acid. When this chemistry takes place in clouds and fogs followed by droplet evaporation (or if this chemistry occurs in aerosol water) then products remain in part in the particle phase, forming SOA. However, current aqueous SOA formation mechanism has not shown how the starting concentrations of precursors and presence of acidic sulfate affect product formation. Aqueous phase photochemical batch reactions were conducted with glyoxal and methylglyoxal at cloud relevant concentrations, using hydrogen peroxide photolysis as the hydroxyl radical (OH) source. Experiments were repeated at higher concentrations and with/without sulfuric acid. Precursors and products were investigated using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. Products included carboxylic acids and higher molecular weight compounds, which are major constituents of aerosols. Sulfuric acid shows little effect on product formation. Dilute aqueous chemistry models successfully reproduced product formation for glyoxal and methylglyoxal at cloud relevant conditions, but measurements deviated from predictions from predictions at elevated concentrations. Higher molecular weight products become increasingly important as precursor concentration increases. Aqueous radical-radical reactions provide explanations for observed higher molecular weight products. Additionally, acetic acid is identified as an SOA precursor for the first time. This work provides an improved understanding of aqueous phase dicarbonyl oxidation mechanism and the overall significance of aqueous SOA formation. Kinetic data are made available to regional and global atmospheric models, and the mechanism described in this work will help people to mitigate adverse aerosol effects.

Book The Aging of Organic Aerosol in the Atmosphere

Download or read book The Aging of Organic Aerosol in the Atmosphere written by Sean Herbert Kessler and published by . This book was released on 2013 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase chemistry or the formation of inorganic compounds. In this work, we endeavor to improve the general understanding of the narrow class of oxidation reactions that occur at the interface between the particle surface and the gas-phase. The heterogeneous oxidation of pure erythritol (C4H1 00 4 ) and levoglucosan (C6H1 00 5) particles by hydroxyl radical (OH) was studied first in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol, particularly that resembling fresh secondary organic aerosol (SOA) and biomass-burning organic aerosol (BBOA). In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. As a continuation of the heterogeneous oxidation experiments, we also measure the kinetics and products of the aging of highly oxidized organic aerosol, in which submicron particles composed of model oxidized organics -- 1,2,3,4-butanetetracarboxylic acid (C8H100 8), citric acid (C6 H8 0 7), tartaric acid (C4H6 0 6 ), and Suwannee River fulvic acid -- were oxidized by gas-phase OH in the same flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to studies of the less-oxidized model systems, particle mass did not decrease significantly with heterogeneous oxidation, although substantial chemical transformations were observed and characterized. Lastly, the immense complexity inherent in the formation of SOA -- due primarily to the large number of oxidation steps and reaction pathways involved -- has limited the detailed understanding of its underlying chemistry. In order to simplify this inherent complexity, we give over the last portion of this thesis to a novel technique for the formation of SOA through the photolysis of gas-phase alkyl iodides, which generates organic peroxy radicals of known structure. In contrast to standard OH-initiated oxidation experiments, photolytically initiated oxidation forms a limited number of products via a single reactive step. The system in which the photolytic SOA is formed is also repurposed as a generator of organic aerosol for input into a secondary reaction chamber, where the organic particles undergo additional aging by the heterogeneous oxidation mechanism already discussed. Particles exiting this reactor are observed to have become more dramatically oxidized than comparable systems containing SOA formed by gas-phase alkanes undergoing "normal" photo-oxidation by OH, suggesting simultaneously the utility of gas-phase precursor photolysis as an effective experimental platform for studying directly the chemistry involved in atmospheric aerosol formation and also the possibility that heterogeneous processes may play a more significant role in the atmosphere than what is predicted from chamber experiments. Consideration is given for the application of these results to larger-scale experiments, models, and conceptual frameworks.

Book Atmospheric Aerosols

    Book Details:
  • Author : Rekha Kale
  • Publisher : Scitus Academics LLC
  • Release : 2015-03
  • ISBN : 9781681171326
  • Pages : 0 pages

Download or read book Atmospheric Aerosols written by Rekha Kale and published by Scitus Academics LLC. This book was released on 2015-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric Aerosols is a vital problem in current environmental research due to its importance in atmospheric optics, energetics, radiative transfer studies, chemistry, climate, biology and public health. Aerosols can influence the energy balance of the terrestrial atmosphere, the hydrological cycle, atmospheric dynamics and monsoon circulations. Because of the heterogeneous aerosol field with large spatial and temporal variability and reduction in uncertainties in aerosol quantification is a challenging task in atmospheric sciences. Keeping this in view the present study aims to assess the impact of aerosols on coastal Indian station Visakhapatnam and the adjoining Bay of Bengal. An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or not. Examples of natural aerosols are fog, forest exudates and geyser steam.

Book Mechanisms of Atmospheric Oxidation of the Oxygenates

Download or read book Mechanisms of Atmospheric Oxidation of the Oxygenates written by Jack Calvert and published by Oxford University Press. This book was released on 2011-08-01 with total page 1634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prepared by an international team of eminent atmospheric scientists, Mechanisms of Atmospheric Oxidation of the Oxygenates is an authoritative source of information on the role of oxygenates in the chemistry of the atmosphere. The oxygenates, including the many different alcohols, ethers, aldehydes, ketones, acids, esters, and nitrogen-atom containing oxygenates, are of special interest today due to their increased use as alternative fuels and fuel additives. This book describes the physical properties of oxygenates, as well as the chemical and photochemical parameters that determine their reaction pathways in the atmosphere. Quantitative descriptions of the pathways of the oxygenates from release or formation in the atmosphere to final products are provided, as is a comprehensive review and evaluation of the extensive kinetic literature on the atmospheric chemistry of the different oxygenates and their many halogen-atom substituted analogues. This book will be of interest to modelers of atmospheric chemistry, environmental scientists and engineers, and air quality planning agencies as a useful input for development of realistic modules designed to simulate the atmospheric chemistry of the oxygenates, their major oxidation products, and their influence on ozone and other trace gases within the troposhere.

Book Secondary Organic Aerosol Formation from Aromatic Hydrocarbons

Download or read book Secondary Organic Aerosol Formation from Aromatic Hydrocarbons written by Chen Song and published by . This book was released on 2006 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formation of Organic Aerosol Through Cloud Chemistry

Download or read book Formation of Organic Aerosol Through Cloud Chemistry written by Anjuli Ramos-Busot and published by . This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic particulate matter in the atmosphere plays an important role in climate forcing, visibility, and adverse health effects. Atmospheric organic aerosol is predominantly of secondary origin, formed in the atmosphere. Laboratory photooxidation experiments, atmospheric aerosol measurements below vs. above clouds and at increasing humidity, and modeling studies all suggest that secondary organic aerosol (SOA) forms from water-soluble gases through aqueous chemistry in clouds and wet aerosols (aqSOA). Previous laboratory experiments are simple compared to the atmospheric water media (single compound deionize water solutions), thus a more realistic approach is needed for the understanding of SOA formation through aqueous chemistry. We conducted batch photooxidation experiments with three different rainwater samples from Camden and Pinelands, NJ and hydroxyl radicals (formed from 150 æM H2O2 + UV radiation). We used rainwater (RW) as a surrogate for cloud water in these experiments. SOA precursors and products were identified by real-time Electrospray Ionization -- Mass Spectrometry (ESI-MS, continuous online sampling) and by Ion Chromatography (discrete samples). Precursors were found predominantly in the positive mode, suggesting the presence of aldehydes, alcohols and organic peroxides, and products were found predominantly in the negative mode, suggesting the presence of organic acids. A decrease in the abundance of ions with the same unit mass-to-charge ratio as standards of glyoxal, methylglyoxal and glycolaldehyde and an increase in the abundance of ions associated with organic acids (e.g., oxalic and pyruvic acid) suggest that these aldehydes were present and reacting. The evidence is strongest for methylglyoxal (three RW samples). Glyoxal oxidation appears to occur in two RW samples; evidence for glycolaldehyde is not as strong. Other potential contributors to SOA formation (precursor and products) were identified based on their percentage of change and absolute change in ion abundance across the reaction.

Book Atmospheric Chemistry and Physics

Download or read book Atmospheric Chemistry and Physics written by John H. Seinfeld and published by John Wiley & Sons. This book was released on 2012-12-18 with total page 1249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly restructured and updated with new findings and new features The Second Edition of this internationally acclaimed text presents the latest developments in atmospheric science. It continues to be the premier text for both a rigorous and a complete treatment of the chemistry of the atmosphere, covering such pivotal topics as: * Chemistry of the stratosphere and troposphere * Formation, growth, dynamics, and properties of aerosols * Meteorology of air pollution * Transport, diffusion, and removal of species in the atmosphere * Formation and chemistry of clouds * Interaction of atmospheric chemistry and climate * Radiative and climatic effects of gases and particles * Formulation of mathematical chemical/transport models of the atmosphere All chapters develop results based on fundamental principles, enabling the reader to build a solid understanding of the science underlying atmospheric processes. Among the new material are three new chapters: Atmospheric Radiation and Photochemistry, General Circulation of the Atmosphere, and Global Cycles. In addition, the chapters Stratospheric Chemistry, Tropospheric Chemistry, and Organic Atmospheric Aerosols have been rewritten to reflect the latest findings. Readers familiar with the First Edition will discover a text with new structures and new features that greatly aid learning. Many examples are set off in the text to help readers work through the application of concepts. Advanced material has been moved to appendices. Finally, many new problems, coded by degree of difficulty, have been added. A solutions manual is available. Thoroughly updated and restructured, the Second Edition of Atmospheric Chemistry and Physics is an ideal textbook for upper-level undergraduate and graduate students, as well as a reference for researchers in environmental engineering, meteorology, chemistry, and the atmospheric sciences. Click here to Download the Solutions Manual for Academic Adopters: http://www.wiley.com/WileyCDA/Section/id-292291.html

Book Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation

Download or read book Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation written by Theodora Nah and published by . This book was released on 2014 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the heterogeneous oxidation of organic particulate matter ("aerosol") is an active area of current research in atmospheric and combustion chemistry. The chemical evolution of organic aerosol is complex and dynamic since it can undergo multiple oxidation reactions with gas phase oxidants to form a mixture of different generations of oxidation products that control the average aerosol mass and volatility. In many of these systems, hydrocarbon free radicals, formed by reaction with gas phase oxidants, play key roles as initiators, propagators and terminators of surface reactions. This dissertation presents a detailed study of the reaction kinetics and mechanisms of the heterogeneous oxidation of unsaturated organic aerosol, and aims to provide new molecular and mechanistic insights into the reaction pathways in heterogeneous organic aerosol oxidation. The heterogeneous oxidation of unsaturated fatty acid (oleic acid C18H34O2, linoleic acid C18H32O2 and linolenic acid C18H30O2) aerosol by hydroxyl (OH) radicals is first studied in Chapter 2 to explore how surface OH addition reactions initiate chain reactions that rapidly transform the chemical composition of unsaturated organic aerosol. Oleic acid, linoleic acid and linolenic acid have the same linear C18 carbon backbone structure with one, two and three C=C double bonds, respectively. By studying carboxylic acids with different numbers of C=C double bonds, the role that multiple reactive sites plays in controlling reaction rates can be observed. The kinetic parameter of interest in these studies is the effective uptake coefficient, defined as the number of particle phase unsaturated fatty acid molecules reacted per OH-particle collision. The effective uptake coefficients for the unsaturated fatty acids are larger than unity, providing clear evidence for particle-phase secondary chain chemistry. The effective uptake coefficients for the unsaturated fatty acids decrease with increasing O2 concentration, indicating that O2 promotes chain termination in the unsaturated fatty acid reactions. The kinetics and products of squalene (a C30 branched alkene with 6 C=C double bonds) oxidation are compared to that of the unsaturated fatty acids in Chapters 3 and 4 to understand how molecular structure and chemical functionality influence reaction rates and mechanisms. The squalene effective uptake coefficient, which is also larger than one, is smaller than that of linoleic acid and linolenic acid despite the larger number of C=C double bonds in squalene. In contrast to the unsaturated fatty acids, the squalene effective uptake coefficient increases with O2 concentration, indicating that O2 promotes chain propagation in the squalene reaction. Elemental and product analysis of squalene aerosol shows that O2 promotes particle volatilization in the squalene reaction, suggesting that fragmentation reactions are important when O2 is present in the OH oxidation of branched unsaturated organic aerosol. In contrast, elemental and product analysis of linoleic acid aerosol shows that O2 does not influence the rate of particle volatilization in the linoleic acid reaction, suggesting that O2 does not alter the relative importance of fragmentation reactions in the OH oxidation of linear unsaturated organic aerosol. Lastly, depending on the aerosol phase (e.g. solid and semi-solid) and the timescale for homogeneous mixing within the aerosol particle, the chemical composition may vary spatially within an aerosol particle. This necessitates the need for new techniques to characterize the interfacial chemical composition of aerosol particles. In the last portion of the dissertation, direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of aerosol particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol particles are exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic aerosol particles are desorbed, ionized and detected with reduced molecular ion fragmentation, allowing for compositional identification. The reaction of ozone with sub-micron oleic acid particles is also measured to demonstrate the ability of DART-MS to identify products and quantify reaction rates in a heterogeneous reaction.

Book The Role of Aqueous phase Oxidation in the Formation of Highly oxidized Organic Aerosol

Download or read book The Role of Aqueous phase Oxidation in the Formation of Highly oxidized Organic Aerosol written by Kelly Elizabeth Daumit and published by . This book was released on 2015 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric particulate matter (or "aerosol") is known to have important implications for climate change, air quality, and human health. Our ability to predict its formation and fate is hindered by uncertainties associated with one type in particular, organic aerosol (OA). Ambient OA measurements indicate that it can become highly oxidized in short timescales, but this is generally not reproduced well in laboratory studies or models, suggesting the importance of formation processes that are not fully understood at present. In this thesis, I focus on the potential for chemistry within aqueous aerosol to produce highly oxidized OA. I first use a retrosynthetic modeling approach to constrain the viable precursors and formation pathways of highly oxidized OA, starting with a target oxidized product and considering possible reverse reactions. Results suggest three general formation mechanisms are possible: (1) functionalization reactions that add multiple functional groups per oxidation step, (2) oligomerization of highly oxidized precursors, or (3) fast aging within the condensed phase, such as oxidation within aqueous particles. The focus of the remainder of the thesis involves experiments designed to study this third pathway. To examine the importance of the formation of highly oxidized OA in the aqueous phase (wet particles or cloud droplets), I investigate aqueous oxidation of polyols within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Results are compared to those from analogous oxidation reactions carried out in bulk solution (the phase in which most previous studies were carried out). Both sets of experiments result in rapid oxidation, but substantially more carbon is lost from the submicron particles, likely due to differences in partitioning of early-generation products. Finally, OA is formed from the gas-phase ozonolysis of biogenic precursors in the presence of reactive aqueous particles, showing that oxidation within the condensed phase can generate highly oxidized products. The overall results of this thesis demonstrate that aqueous-phase oxidation can contribute to the rapid formation of highly oxidized OA and therefore its inclusion in atmospheric models should be considered, but that experiments to constrain such pathways must be carried out under atmospherically relevant conditions.

Book Laboratory Studies on the Formation of Secondary Organic Aerosol from the Atmospheric Oxidation of Alkenes

Download or read book Laboratory Studies on the Formation of Secondary Organic Aerosol from the Atmospheric Oxidation of Alkenes written by Kenneth Stephen Docherty and published by . This book was released on 2004 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons

Download or read book The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons written by Jack G. Calvert and published by Oxford University Press. This book was released on 2002-02-14 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text reviews many of the aspects of the chemistry of the aromatic hydrocarbons and a consensus evaluation of the data by seven of the leading atmospheric scientists. The book covers topics ranging from the relative importance of the compounds in ozone and haze development to methods of estimating elemantary rate coefficients based on structural features of the compounds to mechanisms of aerosol generation and atmostpheric reaction of the polycyclic compounds to photochemical processes. It identifies features of the aromatic hydrocarbons requiring further study and appendicies give the structural formulas and nomenclature of the compounds reviewed in the book.

Book Kinetics and Mechanisms of the Gas phase Reactions of the Hydroxyl Radical with Organic Compounds

Download or read book Kinetics and Mechanisms of the Gas phase Reactions of the Hydroxyl Radical with Organic Compounds written by Roger Atkinson and published by American Institute of Physics. This book was released on 1989 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: