Download or read book Analytically Tractable Stochastic Stock Price Models written by Archil Gulisashvili and published by Springer. This book was released on 2012-09-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.
Download or read book Advanced Equity Derivatives written by Sebastien Bossu and published by John Wiley & Sons. This book was released on 2014-05-19 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Advanced Equity Derivatives: Volatility and Correlation, Sébastien Bossu reviews and explains the advanced concepts used for pricing and hedging equity exotic derivatives. Designed for financial modelers, option traders and sophisticated investors, the content covers the most important theoretical and practical extensions of the Black-Scholes model. Each chapter includes numerous illustrations and a short selection of problems, covering key topics such as implied volatility surface models, pricing with implied distributions, local volatility models, volatility derivatives, correlation measures, correlation trading, local correlation models and stochastic correlation. The author has a dual professional and academic background, making Advanced Equity Derivatives: Volatility and Correlation the perfect reference for quantitative researchers and mathematically savvy finance professionals looking to acquire an in-depth understanding of equity exotic derivatives pricing and hedging.
Download or read book Analysis Geometry and Modeling in Finance written by Pierre Henry-Labordere and published by CRC Press. This book was released on 2008-09-22 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th
Download or read book Valuing Early Stage and Venture Backed Companies written by Neil J. Beaton and published by John Wiley & Sons. This book was released on 2010-03-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Valuing Early Stage and Venture-Backed Companies Unique in the overall sphere of business valuation, the valuing of early stage and venture-backed companies lacks the traditional metrics of cash flow, earnings, or even revenue at times. But without these metrics, traditional discounted cash flow models and comparison to public markets or private transactions take on less relevance, calling for a more "experiential" valuation approach. In a straightforward, no-nonsense manner, the mystique surrounding the valuation of early stage and venture-backed companies is now unveiled. With an emphasis on applications and models, Valuing Early Stage and Venture-Backed Companies shows the most effective way for your company to prepare and present its valuations. Featuring contributed chapters by a panel of top valuation experts, this book dispels improper valuation techniques promulgated by unknowing business appraisers and answers your key questions about valuation theory and which tools you need to successfully apply in your specific situation. Here, you'll find out more about various valuation techniques, including: "Back solving" valuation Modified cost approach Option pricing model Probability-weighted expected returns model Asian puts New data on discounts for lack of marketability Detailed and hands-on, Valuing Early Stage and Venture-Backed Companies equips you with broad foundational data on the venture capital industry, as well as in-depth analyses of distinct early stage company valuation approaches. Performing valuations for your early stage company requires an understanding of the special circumstances faced by your organization. With ample examples of generally accepted allocation models with complex capital structures common to early stage companies, Valuing Early Stage and Venture-Backed Companies mixes real-life experience with deep technical expertise to equip you with the complete, user-friendly resource you'll turn to often in valuing your early stage or venture-backed company.
Download or read book Analytically Tractable Stochastic Stock Price Models written by Archil Gulisashvili and published by Springer Science & Business Media. This book was released on 2012-09-04 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.
Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Download or read book Option Valuation Under Stochastic Volatility written by Alan L. Lewis and published by . This book was released on 2000 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Derivatives Analytics with Python written by Yves Hilpisch and published by John Wiley & Sons. This book was released on 2015-08-03 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.
Download or read book Stochastic Processes Finance And Control A Festschrift In Honor Of Robert J Elliott written by Samuel N Cohen and published by World Scientific. This book was released on 2012-08-10 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Download or read book Quantitative Analysis in Financial Markets written by Marco Avellaneda and published by World Scientific. This book was released on 1999 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains lectures presented at the Courant Institute's Mathematical Finance Seminar.
Download or read book The Heston Model and its Extensions in Matlab and C written by Fabrice D. Rouah and published by John Wiley & Sons. This book was released on 2013-08-01 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.
Download or read book Frontiers in Stochastic Analysis BSDEs SPDEs and their Applications written by Samuel N. Cohen and published by Springer Nature. This book was released on 2019-08-31 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.
Download or read book Option Valuation Under Stochastic Volatility II written by Alan L. Lewis and published by . This book was released on 2016-05-12 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That
Download or read book Option Pricing Models and Volatility Using Excel VBA written by Fabrice D. Rouah and published by John Wiley & Sons. This book was released on 2012-06-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Download or read book Multiscale Stochastic Volatility for Equity Interest Rate and Credit Derivatives written by Jean-Pierre Fouque and published by Cambridge University Press. This book was released on 2011-09-29 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Download or read book Derivatives Analytics with Python written by Yves Hilpisch and published by John Wiley & Sons. This book was released on 2015-06-15 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.
Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.